

Grant Agreement N°: 101020259
Topic: SU-DS02-2020

Autonomous Trust, Security and Privacy

Management Framework for IoT

D4.2: ARCADIAN-IoT Vertical Planes – 2nd version
Revision: v1.0

Work package 4

Task Tasks 4.1, 4.2, 4.3, 4.4, and 4.5

Due date 31/12/2022

Submission date 30/12/2022

Deliverable lead IPN

Version 1.0

Partner(s) / Author(s)

ATOS: Ross Little
IPN: Sérgio Figueiredo, Rúben Leal
TRU: João Casal, Carlos Morgado, Tomás Silva, José
Rosa, Ivo Vilas Boas
UWS: Jose M. Alcaraz Calero, Qi Wang, Ignacio
Martinez-Alpiste, Gelayol Golcarenarenji, Julio Diez
Tomillo, Mohamed Khadmaoui-Bichouna, Mohammad
Alselek
XLAB: Jan Antic
UC: Bruno Sousa, Luis Paquete, Miguel Arieiro, João
Nunes

D4.2: Vertical Planes - second version

© ARCADIAN-IoT Consortium 2021-2024 Page 2 of 142

Abstract
This public technical report constitutes deliverable D4.2 of ARCADIAN-IoT, a Horizon2020
project with the grant agreement number 101020259, under the topic SU-DS02-2020. D4.2 has
the purpose of reporting the research activities performed with respect to the development of the
ARCADIAN-IoT vertical planes (Identity Management, Trust Management and Recovery
Management) and the associated components.

Keywords: ARCADIAN-IoT, Identity, Trust, Recovery, Management

Document Revision History

Version Date Description of change List of contributor(s)

V0.1 06/09/2022 Preliminary Template ATOS

V0.2 30/11/2022
Multiple partners
contributions

ATOS, IPN, UC, TRU, XLAB,
UWS, XLAB, UC

V0.3 05/12/2022
Deliverable quality
revision

IPN

V0.4 21/12/2022 Internal review ATOS

V0.5 27/12/2022
Document cleaning and
formatting

IPN

V1.0 30/12/2022
Conclusions review and
final editing of the
document

IPN

Disclaimer
The information, documentation and figures available in this deliverable, is written by the
ARCADIAN-IoT (Autonomous Trust, Security and Privacy Management Framework for IoT) –
project consortium under EC grant agreement 101020259 and does not necessarily reflect the
views of the European Commission. The European Commission is not liable for any use that may
be made of the information contained herein.

Copyright notice: © 2021 - 2024 ARCADIAN-IoT Consortium

Project co-funded by the European Commission under SU-DS02-2020

Nature of the deliverable: OTHER

Dissemination Level

PU Public, fully open, e.g. web √

CI
Classified, information as referred to in Commission Decision
2001/844/EC

CO Confidential to ARCADIAN-IoT project and Commission Services

D4.2: Vertical Planes - second version

© ARCADIAN-IoT Consortium 2021-2024 Page 3 of 142

* R: Document, report (excluding the periodic and final reports)
DEM: Demonstrator, pilot, prototype, plan designs
DEC: Websites, patents filing, press & media actions, videos, etc.
OTHER: Software, technical diagram, etc

D4.2: Vertical Planes - second version

© ARCADIAN-IoT Consortium 2021-2024 Page 4 of 142

EXECUTIVE SUMMARY

Deliverable D4.2 is the second deliverable reporting the up-to-date technical research activities
performed regarding the Vertical Planes of ARCADIAN-IoT. It thus comprises the analysis and
investigations on how to provide each of the components for the three Vertical Planes – Identity
Management, Trust Management, and Recovery Plane - taking into consideration the defined
framework requirements and applicable domains and specific use cases.
The three vertical planes contribute towards the same objective, with some components being
use case agnostic and others being more applicable to certain use cases. The associated
components are as follows:

• Identity Management Plane (Task 4.1)
o Decentralized Identifiers
o eSIM – hardware-based identity and authentication
o Biometrics
o Authentication

• Trust Management Plane (Task 4.2)
o Verifiable Credentials
o Network-based Authorization
o Reputation System
o Remote Attestation

• Recovery Management Plane (Task 4.3)
o Self-recovery
o Credential recovery

The main outcome of this deliverable includes the updated specification of each of the
components and includes architecture design, interfaces and APIs, relevant security
considerations and status towards the support of the targeted functionalities. Part of the
components also provide additional details such as the description of implementation approach
(e.g. target technology or software language), adopted approach for supporting the project’s use
cases in the three addressed domains, and pointers to resulting resources. Another major
outcome includes preliminary or partial evaluation results for components which are in more
advanced implementation state.
Finally, the report considers the future work that is to be taken towards the completion for each
component (e.g. currently missing functionalities, interfaces or supported execution
environments) and which will enable their future integration, validation and evaluation.

D4.2: Vertical Planes - second version

© ARCADIAN-IoT Consortium 2021-2024 Page 5 of 142

TABLE OF CONTENTS

EXECUTIVE SUMMARY .. 4

TABLE OF CONTENTS ... 5

LIST OF FIGURES ... 8

LIST OF TABLES ...10

ABBREVIATIONS ...11

1 INTRODUCTION ..13

1.1 ARCADIAN-IoT and its Vertical Planes ...13

1.2 Objectives ...14

2 IDENTITY PLANE ..16

2.1 Decentralized Identifiers (ATOS) ..16

2.1.1 Overview ...16

2.1.2 Technology research ..18

2.1.3 Design specification ..25

2.1.4 Evaluation and results ...33

2.1.5 Future work ...34

2.2 eSIM – Hardware-based identification and authentication (TRU)35

2.2.1 Overview ...35

2.2.2 Technology research ..37

2.2.3 Design specification ..39

2.2.4 Evaluation and results ...41

2.2.5 Future work ...41

2.3 Biometrics (UWS) ...41

2.3.1 Overview ...41

2.3.2 Technology research ..44

2.3.3 Design specification ..47

2.3.4 Evaluation and results ...52

2.3.5 Future work ...52

2.4 Authentication (TRU) ..53

2.4.1 Overview ...53

2.4.2 Technology research ..54

2.4.3 Design specification ..55

2.4.4 Evaluation and results ...59

2.4.5 Future work ...60

3 TRUST PLANE ...61

3.1 Verifiable Credentials (ATOS) ...61

3.1.1 Overview ...61

3.1.2 Technology research ..62

3.1.3 Design specification ..67

3.1.4 Evaluation and results ...83

3.1.5 Future work ...83

3.2 Authorization: Network-based Authorization enforcement and authorization
distribution (TRU) ..84

3.2.1 Overview ...84

3.2.2 Technology research ..85

3.2.3 Design specification ..92

D4.2: Vertical Planes - second version

© ARCADIAN-IoT Consortium 2021-2024 Page 6 of 142

3.2.4 Evaluation and results ...94

3.2.5 Future work ...94

3.3 Reputation System (UC) ...95

3.3.1 Overview ...95

3.3.2 Technology research ..96

3.3.3 Design specification ..100

3.3.4 Evaluation and results ...103

3.3.5 Future work ...104

3.4 Remote Attestation (IPN) ..105

3.4.1 Overview ...105

3.4.2 Technology research ..107

3.4.3 Design specification ..111

3.4.4 Evaluation and results ...118

3.4.5 Future work ...118

4 RECOVERY PLANE ...119

4.1 Self-recovery (XLAB) ..119

4.1.1 Overview ...119

4.1.2 Technology research ..120

4.1.3 Design specification ..121

4.1.4 Evaluation and results ...123

4.1.5 Future work ...123

4.2 Credentials recovery (ATOS) ..125

4.2.1 Overview ...125

4.2.2 Technology research ..126

4.2.3 Design specification ..128

4.2.4 Evaluation and results ...130

4.2.5 Future work ...130

5 CONCLUSIONS ...131

APPENDIXES ...132

Appendix A – Analysis of events in Domain A for Reputation System132

Appendix B – Analysis of events in Domain B for Reputation System133

Appendix C – Analysis of events in Domain C for Reputation System134

Appendix D – Policy Manager User Manual ..135

Policy Management Dashboard ...135

Default policy ...135

Updating policies ...135

Deleting policies\ ...136

Adding new policies ...136

Policy API ..136

Policy fields ..136

Backend fields ...136

Policy definition fields ..136

Endpoints...137

GET /policies ...137

POST /policy ..137

PATCH /policy/{id} ...137

DELETE /policy/{id} ...137

GET /default_policy ...137

PUT /default_policy ...137

D4.2: Vertical Planes - second version

© ARCADIAN-IoT Consortium 2021-2024 Page 7 of 142

Appendix E – DID METHODS ...138

REFERENCES ..141

D4.2: Vertical Planes - second version

© ARCADIAN-IoT Consortium 2021-2024 Page 8 of 142

LIST OF FIGURES

Figure 1 – ARCADIAN-IoT framework 13

Figure 2 - Sidetree DID Method Overlay network [16] 21

Figure 3 - Public DIDs published on Sidetree Node based on Transmute Sidetree.js Ref

[38] 27

Figure 4 - Public DIDs hosted on Service Provider´s DID:WEB endpoint 28

Figure 5 - Privacy preserving peer DID created in SSI wallet per connection 31

Figure 6 - ARCADIAN-IoT Framework Sidetree Node deployment 33

Figure 7 - eSIM component overall view 36

Figure 8 - Open ID connect architecture 38

Figure 9 - Architecture of the Network-based authentication in third-party services 40

Figure 10 - Logical process view of Biometrics component. 48

Figure 11 - Sequence diagram for registration use case. 49

Figure 12 - Sequence diagram for person authentication from a smartphone. 50

Figure 13 - Sequence diagram for person authentication from a video being recorded by

drone. 50

Figure 14 - High-level architectural view of the biometrics component and other

components that have relation with. 51

Figure 15 – AMQP API specification for biometrics messaging 52

Figure 16 – REST API specification for Biometrics component 52

Figure 17 - ARCADIAN-IoT authentication high-level architecture 56

Figure 18 - Architecture from ARCADIAN-IoT MFA for persons 58

Figure 19 - Authenticated person operation flow 59

Figure 20 - Ledger uSelf built on top of Hyperledger Aries GO Agent 63

Figure 21 - Protocol support for SSI [32] 65

Figure 22 - Crytpgraphic technology [32] 65

Figure 23 - Register Person in ARCADIAN-IoT Framework by a SP service 68

Figure 24 - Ledger uSelf Broker Self-Sovereign Identity Solution + SSI IdP 69

Figure 25 - Issue a Person VC 71

Figure 26 - Verify a Person VC and provide identity claims 72

Figure 27 - Service Provider service registers a Person 73

Figure 28 - Service Provider deletes a registered Person that it previously registered 74

Figure 29 - SSI IdP Interface description 75

D4.2: Vertical Planes - second version

© ARCADIAN-IoT Consortium 2021-2024 Page 9 of 142

Figure 30 - Self-Sovereign Identity deployment in the ARCADIAN-IoT Framework 76

Figure 31 - SSI IdP Registered Entities 77

Figure 32 - SSI IdP Issuer Screen 78

Figure 33 - QR code display to connect to the SSI Agent 78

Figure 34 - Ledger uSelf mobile SSI Wallet UI 79

Figure 35 - SSI IdP Data Model 82

Figure 36 - 3GPP's PCC Architecture overview41 87

Figure 37 - Open5GS architecture 89

Figure 38 - ARCADIAN-IoT Network-based Authorization high-level architecture 92

Figure 39 - Network-based Authorization current technical architecture 93

Figure 40 - Reputation System & Policy Manager logical architecture view 100

Figure 41 - Reputation System internal logic to determine reputation score 101

Figure 42 - OWASP’s top 10 IoT security issues (2018 version) 108

Figure 43 - Remote Attestation logical architecture and external dependencies 111

Figure 44 - Remote Attestation for ARCADIAN-IoT (RA2IoT) deployment architecture

view 115

Figure 45 - Self-recovery logical architecture view 121

Figure 46 - Recovery of SSI Wallet Credentials Use Case 128

Figure 47 - SSI Credential Recovery Logical Architecture 129

Figure 48 - Screen with default and other policies 135

Figure 49 – Configurable policies fields 136

D4.2: Vertical Planes - second version

© ARCADIAN-IoT Consortium 2021-2024 Page 10 of 142

LIST OF TABLES

Table 1 – Current status of the network-based identification and authentication

component 39

Table 2 - Network-based authentication interfaces 40

Table 3: Image data bases 45

Table 4 - Algorithm accuracy 45

Table 5: Machine Learning frameworks 46

Table 6 - MFA interfaces 57

Table 7 - Network-based Authorization component current produced resources 90

Table 8 - Network-based Authorization interface status 92

Table 9 - Data privacy concerns (preliminar analysis) 99

Table 10 - Technologies in the reputation system and policy manager 102

Table 11 - Technologies in the reputation system and policy manager 102

Table 12 - Results of Alpha and Beta testing (with forgetting factor of 0.5) 103

Table 13 DID Method Table [8] 138

D4.2: Vertical Planes - second version

© ARCADIAN-IoT Consortium 2021-2024 Page 11 of 142

ABBREVIATIONS

5GC 5th Generation Core

5GS 5th Generation System

AI Artificial Intelligence

AIoT ARCADIAN-IoT

aiotID ARCADIAN-IoT Identifier

CAS Content Addressable Storage

CBOR Concise Binary Object Representation

CTI Cyber Threat Intelligence

CWT CBOR Web Token

DAG Directed Acyclic Graph

DB Database

DID Decentralized Identifier

DID Doc DID Document

DGA Drone Guardian Angel

DPoP Demonstrating Proof-of-Possession at the Application Layer

DTR Device Trust Registry

ECDSA Elliptic Curve Digital Signature Algorithm

eSIM embedded Subscriber Identity Module

eUICC embedded Universal Integrated Circuit Card

EPC Evolved Packet Core

FE Functional Encryption

GSMA Global System for Mobile Communications Association

GSMA-SAS GSMA’s Security Accreditation Scheme

GPU General Processor Unit

GUI Graphical User Interface

HD High Definition

HE Hardened Encryption

HTTP Hypertext Transfer Protocol

HW Hardware

IMSI International Mobile Subscriber Identity

IdP Identity Provider

IDS Intrusion Detection System

IoT Internet of Things

IOTA Internet of Things Association

IPR Intellectual Property Rights

IPFS Inter Planetary File System

JSON JavaScript Object Notation

JWM JSON Web Message

JWT Java Web Token

KPI Key Performance Indicator

LTE Long-Term Evolution

D4.2: Vertical Planes - second version

© ARCADIAN-IoT Consortium 2021-2024 Page 12 of 142

NIST National Institute of Standards and Technology

NR New Radio

OCS Online Charging System

OFCS Offline Charging System

OIDC OpenID Connect

OS Operating System

OSD Object Storage Daemon

PCC Policy and Charging Control

PCF Policy Control Function

PCEF Policy and Charging Enforcement Function

PCRF Policy and Charging Rules Function

RA Remote Attestation

RA2IoT Remote Attestation for ARCADIAN-IoT

RATS Remote Attestation Procedures

REST Representational State Transfer

RFC Request for Comment

RoT Root of Trust

SAS Security Accreditation Scheme

SE Secure Element

SIOP Self-issued OpenID Provider

SOTA State-Of-The-Art

SP Service Provider

SSI Self-Sovereign Identity

UCCS Unprotected CWT Claims

VC Verifiable Credential

VDR Verifiable Data Registry

XML eXtensible Markup Language

D4.2: Vertical Planes - second version

© ARCADIAN-IoT Consortium 2021-2024 Page 13 of 142

1 INTRODUCTION

1.1 ARCADIAN-IoT and its Vertical Planes

The ARCADIAN-IoT project aims to develop a cyber security framework relying on a novel
approach to manage and coordinate, in an integrated way, identity, trust, privacy, security, and
recovery in IoT systems. The proposed approach organizes the multiple cyber security
functionalities offered by the framework into several planes combined together in an optimized
way to support the end-to-end services. In particular, the framework includes three Vertical Planes
devoted to identity, trust, and recovery management, and three Horizontal Planes supporting the
Vertical Planes by managing privacy of data, monitoring security of entities, and providing
Permissioned Blockchain and Hardened Encryption technologies (see Figure 2).

Figure 1 – ARCADIAN-IoT framework

Work Package 4 (WP4) in the ARCADIAN-IoT project is dedicated to the design and technological
development of the functionalities that are mapped into the Vertical Planes for each selected use
case. It is organized in three tasks, each one focusing on one plane. The research activity in WP4
is being conducted from October 2021 to October 2023 and this deliverable (D4.2) details the
research activities, the provided resources, and the results of evaluations, that have been
obtained within WP4 until December 2022. The reporting takes an agile approach, with D4.2 fully
revising D4.1 [46] to provide a self-contained report on the components in the Vertical Plane
with this version including greater detail on their design and implementation. The project has setup
a Gitlab repository1 where partners - where there is no IPR restriction - have shared pertinent
resources (e.g. component’s OpenAPI interface specification, code snippets or in some cases
component software).
The Vertical Planes of the ARCADIAN-IoT framework are organized as follows:

- The Identity plane enables the management of identities of the different entities (e.g.
persons, devices and ARCADIAN-IoT components), and comprises work on the multiple
identification schemes, particularly the Decentralized Identifiers for providing a
decentralized digital identity, eSIMs as secure elements capable of storing identity and
authentication credentials, and Biometrics focusing facial recognition from different
devices and considering diverse circumstances (e.g. distance, angle, exposure to light).
The status of the Identity Plane is presented in section 2.

1 https://gitlab.com/arcadian_iot/

D4.2: Vertical Planes - second version

© ARCADIAN-IoT Consortium 2021-2024 Page 14 of 142

- The Trust plane implements mechanisms for managing trust on the involved entities
(persons, devices and services), namely Verifiable Credentials as a method to enable
trusted identification of users and things through the issuing of identity claims, Remote
Attestation for attesting IoT devices and services integrity with the support of hardware-
based RoT, Network-based Authorization for enforcing trust-based authorization rules
in the network core and informing secure elements about their corresponding device’s
trustworthiness level, and the Reputation System, responsible for determining the
different entities’ Reputation scores based on data received from other entities and
ARCADIAN. The research status on Trust plane is described in section 3.

- Finally, the Recovery plane addresses recovery management of data associated to the
different types of entities, concretely the Self-Recovery for enabling heterogeneous
devices to access data recovery services according to different access policies, and the
Credentials Recovery for secure recovery of credentials, the first and necessary step to
trigger data recovery actions. The research status on Recovery plane is presented in
section 4.

1.2 Objectives

WP4 aims at contributing to achieving 6 of the ARCADIAN-IoT’s objectives and associated

individual Key Performance Indicators (KPIs), as defined in its grant agreement. Furthermore, the

component-specific KPIs have been revised in this deliverable for providing more accurate and

measurable indicators for the success of the project.

The summary of the project’s objectives and WP4’s contribution to the associated KPIs is listed

here, with additional details being given in the description of each WP4 component:

• Objective 1: To create a decentralized framework for IoT systems - ARCADIAN-IoT
framework and

• Objective 2: Enable security and trust in the management of objects’ identification

o To support at least 2 identification factors for devices

o To support Decentralized Identifiers in at least two of the use case domains

o To use eSIM to support an identity approach at hardware level, as a robust identity
mechanism for devices

• Objective 3: Enable distributed security and trust in management of persons’
identification

o To enable at least 3 multiple simultaneous identification approaches for persons (
Decentralized Identifiers, eSIM and Biometrics)

o To leverage cellular network authentication processes in a new zero-touch
authentication of IoT devices in third-party services

o To reduce inference time for face verification algorithms, reduce end-to-end speed
of biometrics process and improve accuracy and reliability of face verification
algorithms at close and far distances

o To enable cost-effective camera and drone platforms

• Objective 4: Provide distributed and autonomous models for trust, security and
privacy – enablers of a Chain of Trust (CoT)

o To support Verifiable Credentials (VC) protocol for integration in the Permissioned
Blockchain in at least one domain use case, and supporting VC’s interoperability
with at least one eIDAS identity schema

o To support automatic bidirectional communication authorization enforcement for
devices and people according to trustworthiness levels and its dynamic changes

D4.2: Vertical Planes - second version

© ARCADIAN-IoT Consortium 2021-2024 Page 15 of 142

related with security events, and reduce authorization policies enforcement time
after the network is informed

o To be able to determine and share reputation score for persons, devices and
services

o To increase the supported number of reputation events received and processed
per unit of time and to reduce the time required to determine reputation

o To support Remote and functional attestation providing Root of Trust mechanisms
with at least one type of Secure Element (eSIM, cryptochip) and for at least two
different types of devices

o To support remote attestation involving multiple verifiers (by leveraging Attribute-
based encryption for attestation evidence)

o To support initiation of remote attestation via watchdog-based attestation trigger
(via Verifier) and attestation cues (via Reputation System)

o To feed device and service reputation models via Attestation Evidence

• Objective 5: Provide a Hardened Encryption with recovery ability.
o To enable data to be encrypted in a selective way, by applying policies that define

which stakeholders can decrypt partial or complete data

• Objective 6: Self and coordinated healing with reduced human intervention.
o To enable applications/processes/devices to run as expected after recovery
o To support Credential recovery operations after security / privacy incidents with

persons and IoT devices, and to support recovery of DIDs and VCs
o To securely inform the eSIM of devices trustworthiness level
o To use eSIM in device self-protection and self-recovery actions

D4.2: Vertical Planes - second version

© ARCADIAN-IoT Consortium 2021-2024 Page 16 of 142

2 IDENTITY PLANE

2.1 Decentralized Identifiers (ATOS)

2.1.1 Overview

2.1.1.1 Description

As described in the W3C DID Core Specification [3] “Decentralized identifiers (DIDs) are a new
type of identifier that enables verifiable, decentralized digital identity. A DID refers to any subject
(e.g., a person, organization, thing, data model, abstract entity, etc.) as determined by the
controller of the DID. In contrast to typical, federated identifiers, DIDs have been designed so that
they may be decoupled from centralized registries, identity providers, and certificate authorities.
Specifically, while other parties might be used to help enable the discovery of information related
to a DID, the design enables the controller of a DID to prove control over it without requiring
permission from any other party. DIDs are URIs that associate a DID subject with a DID document
allowing trustable interactions associated with that subject. Each DID document expresses
cryptographic material, verification methods, or services, which provide a set of mechanisms
enabling a DID controller to prove control over the DID. Proving control over the DID enables
services to provide trusted interactions associated with the DID subject.”
The DID is a URI composed of three parts; scheme identifier, a DID method and a specific
identifier within the DID method, and resolves to DID Documents. The DID solution will follow the
standard architecture model as portrayed by the following figure in the DID Core specification:

Figure 4 - ARCADIAN-IoT DID solution's basic architecture model [3]

A DID method is an implementation of the features described in the DID specifications, to answer
specific needs usually recorded on a Verifiable Data Registry (VDR). It specifies the operations
by which DIDs and DID documents are created, updated, recovered, deactivated and resolved.
In the context of ARCADIAN-IoT the DID Documents will be stored on a VDR. The primary
candidate VDRs under analysis are based on sidetree DID Method overlay networks composed
of independent peer nodes, with their trust anchor provided by blockchain. These nodes
implement Content Addressable Storage (CAS) to host the DID Docs and interact with a
blockchain to provide a notarised trust anchor, as described in the Sidetree specification. That
said, other DID methods are also analysed for their suitability to the ARCADIAN-IoT framework
and use cases, considering that latest DID methods that are trusted, provide privacy and do not
rely upon blockchain.

D4.2: Vertical Planes - second version

© ARCADIAN-IoT Consortium 2021-2024 Page 17 of 142

It is proposed therefore to provide ARCADIAN-IoT framework with different options for supporting
DIDs as per the needs of use case deployments. Specifically, DIDs are part of the Self-Sovereign
Identity solution to be deployed in the ARCADIAN-IoT framework, as they provide the root of trust
in Verifiable Credentials as described in section 3.1.

2.1.1.2 Requirements

A recall of the high-level requirement 1.1.1 first defined in D2.4 [1] is included below and it is
also supplemented with additional related sub-requirements.

• Requirement 1.1.1 – Decentralized Identity Management
o Decentralised Identifiers (DID) to be supported as per the W3C Decentralized

Identifier specification.
o Support cryptographic mechanisms such as zero knowledge proof (ZKP) and ZK-

SNARKS that add advanced privacy capabilities
o Make use of DLT blockchain technologies in providing Decentralized Identifiers.
o Connection with an existing distributed and decentralised node for storing the

ledger information on which the Self-Sovereign Identity) SSI system will rely.
o Creation of a mobile interface for the end user’s personal devices.

2.1.1.3 Objectives and KPIs

KPI scope

To support at least two of the use case domains
Measurable Indicator

Number of domains using DIDs
Benchmarking (OPTIONAL)

Not Applicable
Target value (M30) Current value (M20)

2 0

KPI scope

Enable, at least 3 multiple simultaneous identification approaches for persons.

Measurable Indicator

Implement Decentralized Identifiers in a person´s mobile wallet as a basis for supporting
Verifiable Credential identification
Benchmarking (OPTIONAL)

Not Applicable
Target value (M30) Current value (M20)

3 0

KPI scope

Support, at least two robust identity mechanisms for devices and apps/services.

Measurable Indicator

Devices and apps/services support Decentralized Identifiers.
Benchmarking (OPTIONAL)

Not Applicable
Target value (M30) Current value (M20)

2 0

D4.2: Vertical Planes - second version

© ARCADIAN-IoT Consortium 2021-2024 Page 18 of 142

2.1.2 Technology research

Candidate Verifiable Data Registries (VDRs) under analysis include distributed Sidetree DID
Method overlay networks composed of independent peer nodes, with their trust anchor provided
by blockchain. These nodes implement CAS to host the DID Docs and interact with a blockchain
to provide a notarised trust anchor, as described in the Sidetree specification [4]. That said, other
DID methods are also analysed for their suitability to the ARCADIAN-IoT framework, and also for
supporting different DID methods as per the needs of differing scenarios.
To this effect, ARCADIAN-IoT will consider supporting Decentralized Identifiers by the following
methods and analyse the pros and cons of each:

I. Integrating with and existing distributed and decentralised system for storing the DID Doc
on which the SSI system will rely (external to ARCADIAN-IoT components)

II. Integrating with the Permissioned Blockchain (developed in WP3) to provide a trust anchor
for publishing the DID Doc

III. Integrating with self-published DIDs that do not rely upon existing distributed and
decentralised systems

2.1.2.1 Background

ATOS have previous integration knowledge and developed java code supporting HTTP
Signatures [39] for client and server side implementations with public keys published by DID:WEB
[10]. Additionally, ATOS have an existing SSI Wallet prototype as part of the labs Ledger uSelf
solution based on Hyperledger Aries (see section 3.1.2.1 for more details).

The following sections investigate the current state of the art in this area.

2.1.2.1.1 Integration with existing distributed and decentralised systems
supporting DIDs

As can be seen from Table 13 DID Method Table in Appendix E (obtained from W3C DID
Specification Registries [8]), there are over a hundred published DID methods utilising different
VDR technologies to host the DIDs and others that don´t need any VDR. Previously it was thought
to publish the DID Docs directly on a blockchain network such as with did:sov or did:signor.
However, ARCADIAN-IoT will not follow this approach so to avoid any potential issue with the
GDPR and also to consider more recent advancements in this area to host the DID docs off-chain,
but still provide the necessary trust by different means, from decentralised and distributed to
federated and centralised.

We will examine some of these DID methods that could be well suited to the needs of ARCADIAN-
IoT as follows:

did:elem [9]
The DID method element is an implementation based on the Sidetree protocol that uses the public
Ethereum blockchain as the ledger layer and IPFS as a Content-addressable storage layer. Tools
are made available for users to manage their own DIDs.
The primary benefit of using this method is that the DID Doc´s are hosted off-chain with their trust
anchored in the Ethereum blockchain network, and thus personal DID Doc data can be deleted.
It is also possible to install the software to setup a private network and integrate this into an
ARCADIAN-IoT deployment, as described in section 2.1.2.2.
It could be thought that a potential disadvantage is that, as it is hosted on a public blockchain,
then potentially if a hacker managed to gain access to the user’s DID Doc, he could update the
keys to use the ones he has control of. However, as the ability to modify the DID Doc is based
upon the user having access to the private key for controlling the DID, the risk is actually the same
whether it is a permissioned blockchain or a public blockchain. Note, the recovery procedure
would also be the same in that a DID controller (third person) would use a recovery key to regain
control of the DID Doc if this scenario were to occur.

D4.2: Vertical Planes - second version

© ARCADIAN-IoT Consortium 2021-2024 Page 19 of 142

• did:web [10]

DIDs that target a distributed ledger face significant practical challenges in bootstrapping enough
meaningful trusted data around identities to incentivize mass adoption. This DID method simply
bootstraps the trust using a web domain's existing and well-known address to host and manage
the DIDs, as per the following examples.

Example of an organisation decentralized identifier:
- did:web:w3c-ccg.github.io

Example of an organisation member decentralized identifier:

- did:web:w3c-ccg.github.io:user:alice

This is a very simple method where the above example organisation DID Doc would be hosted at
https://w3c-ccg.github.io/.well-known/did.json. This would enable organisations to easily manage
their own DIDs for persons, things and services and only the organisation´s themselves can
update the DID Doc.

• did:ion [11]

ION is a Layer 2 open, permissionless network based on the purely deterministic Sidetree
protocol, which requires no special tokens, trusted validators, or additional consensus
mechanisms; the linear progression of Bitcoin's timechain is all that is required for its operation.
ION is a public, permissionless, DID network developed by Microsoft that implements the
blockchain-agnostic Sidetree protocol on top of Bitcoin (as a 'Layer 2' overlay) to support
DIDs/DPKI (Decentralized Public Key Infrastructure) at scale, where the DID Docs are hosted off-
chain on the IPFS.
The majority of ION's code is developed under the blockchain-agnostic Sidetree protocol
repository2, which the project uses internally with the code required to run the protocol on Bitcoin,
like the ION network.

It is therefore similar to the did:elem method previously described and is able to be supported by
integrating to a node hosted by Microsoft or alternatively installing a bitcoin node and Sidetree
deployment. The tools support for creating and publishing DIDs with ION are availableonline3,
and it is seen that the native key algorithms supported are: secp256k1 and Ed25519.

• did:ebsi [12][14]

European Union is supporting the adoption of Self-Sovereign identity under the European
Blockchain Services Infrastructure4 (EBSI) and within that initiative the European Self-Sovereign
Identity Framework5 (ESSIF). EBSI provides a blockchain infrastructure that offers cross-border
public services based on Hyperledger Besu. DIDs are created with the Besu blockchain
addresses and hosted on the blockchain itself. The use of DIDs is aimed at trusted services and
for natural and legal person identifiers.
Currently services are under development and are restricted to a selected group of projects as
early adopters [19] and organisations that want to test their wallets with the ecosystem.
Within ARCADIAN-IoT a sub-objective is to support eIDAS Bridge [20] within the ESSIF project
where a service can issue Verifiable Credentials to a user.
An important note on the integration to support the did:ebsi is the need to perform EBSI DID
authentication[9] with the SIOP protocol as opposed to DIDCOMM so it would be needed for the
SSI wallet to be compliant with the former. Also, of note is that the cryptographic key algorithm
supported by EBSI at this time is secp256k1.

2 https://github.com/decentralized-identity/Sidetree
3 https://github.com/decentralized-identity/ion-tools#ionjs
4 https://ec.europa.eu/digital-building-blocks/wikis/display/EBSI/Home
5 https://decentralized-id.com/government/europe/eSSIF

https://ec.europa.eu/digital-building-blocks/wikis/display/EBSI/Home
https://decentralized-id.com/government/europe/eSSIF

D4.2: Vertical Planes - second version

© ARCADIAN-IoT Consortium 2021-2024 Page 20 of 142

As the open source SSI frameworks under consideration to support Verifiable Credentials in
section 3.1. only supports DIDCOMM, at this time, it will be a challenge to support integration with
EBSI considering also it would be needed to apply to be an early adopter. A future action will be
to consider how SIOP can be integrated as an additional DID messaging protocol in the SSI
Frameworks under consideration.

• did:iota [13]
The IOTA DID Method Specification describes a method of implementing the Decentralized
Identifiers standard on the IOTA Tangle, a Distributed Ledger Technology discussed in
ARCADIAN-IoT D3.1 [5]. It currently conforms to an outdated version of the W3C DID
specifications v1.0 Working Draft 20200731 and describes how to publish DID Document Create,
Read, Update and Delete (CRUD) operations to the IOTA Tangle. In addition, it lists additional
non-standardized features that are built for the IOTA Identity implementation.

Important features of IOTA Tangles are:

− The lack of fees, requiring no cryptocurrency tokens to be owned in order to submit a
message to the DLT.

− The DLT supports both a public and permissionless network which runs the IOTA
cryptocurrency.

The DIDs that follow this method have the following format:
iota-did = "did:iota:" iota-specific-idstring
iota-specific-idstring = [iota-network ":"] iota-tag
iota-network = char{,6}
iota-tag = base-char{44}
char = 0-9 a-z
base-char = 1-9 A-H J-N P-Z a-k m-z

iota-network
This is an identifier of the public or private (permissionless or permissioned) IOTA network where
the DID is stored.
The following values are reserved:

− main: This references the main network which refers to the Tangle known to host the IOTA
cryptocurrency.

− dev: This references the development network known as "devnet" maintained by the IOTA
Foundation.

When no IOTA network is specified, it is assumed that the DID is located on the main network.
This means that the following DIDs will resolve to the same DID Document as in the following
example:

Example:
- did:iota:main:H3C2AVvLMv6gmMNam3uVAjZpfkcJCwDwnZn6z3wXmqPV
- did:iota:H3C2AVvLMv6gmMNam3uVAjZpfkcJCwDwnZn6z3wXmqPV

IOTA-Tag
The IOTA tag references an indexation which resolves to the initial DID Messages, and the
following steps MUST be taken to generate a valid tag:

− Generate an asymmetric keypair using a supported verification method type.

− Hash the public key using BLAKE2b-256 then encode it using Base58-BTC.

− This public key MUST be embedded into the DID Document (see CRUD: Create).
DID Documents associated with the did:iota method consist of a chain of data messages, called
"DID messages", published to a Tangle. The Tangle has no understanding of DID messages and
acts purely as an immutable database. The chain of DID messages and the resulting DID
Document must therefore be validated on the client side. Therefore any agent that needs to read
and verify a did:iota method will need to implement specific Tangle validation.

D4.2: Vertical Planes - second version

© ARCADIAN-IoT Consortium 2021-2024 Page 21 of 142

The IOTA Identity framework currently supports two Verification Method Types:

− Ed25519VerificationKey2018: can be used to sign DID Document updates, Verifiable
Credentials, Verifiable Presentations, and arbitrary data with a
JcsEd25519Signature2020.

− X25519KeyAgreementKey2019: can be used to perform Diffie-Hellman key exchange
operations to derive a shared secret between two parties.

As is the implementation of the IOTA DID method it is understood that it would need integration
to be interoperable with other SSI frameworks for reading the DID from the Tangle DLT network.
As IOTA Tangle networks are immutable networks, once something is uploaded, it can never be
completely removed. This directly conflicts with the GDPR´s “right-to-be-forgotten” for any
Personal Identifiable Information (PII). As such, it is not recommended to use the IOTA DID for
persons, but only to be used for the Identity of Organisations and Things (and those Things that
are not used by an individual).
As this is a big limitation for the majority of ARCADIAN-IoT use cases it is ruled out at this point
and so will ARCADIAN-IoT not use this DID Method.

2.1.2.1.2 Integration with Permissioned Blockchain to provide a trust
anchor for publishing the DID Doc

As ARCADIAN-IoT will also provide a Permissioned Blockchain an option would be to re-use the
Permissioned Blockchain to anchor the trust in a distributed Sidetree overlay network.
An open-source implementation of Sidetree that is under development by Transmute Industries
is currently being investigated and is available on github [15]. This implements the Sidetree
version 1.0 protocol, whose purpose is to create a blockchain based public key infrastructure,
where rather than having a central authority that can accept or revoke keys, by having the
blockchain act as a immutable witness for registering public keys, anyone can publish a public
key that can be used to establish identity. The Sidetree protocol specifies using a CAS and a
Ledger to establish a public key infrastructure, where public keys are stored in a Content
Addressable Storage, and pointers to that storage are published on a Ledger.
A simple example of this would be a publicly available server, where anyone could upload a public
key and an identifier for that public key. However, in essence this sets up a central authority and
a single point of failure. So instead, the implementation makes use of a public ledger such as
Bitcoin, Ethereum or even a Permissioned Blockchain such as Hyperledger Fabric and uses IPFS
as a CAS to point to Decentralized Identifiers and access the Public Keys in the hosted DID
Documents. Such an implementation is depicted in Figure 2 shown below.

Figure 2 - Sidetree DID Method Overlay network [16]

Architecturally, a Sidetree network is a network consisting of multiple logical servers (Sidetree
nodes) executing Sidetree protocol rules, overlaying a blockchain network as illustrated by the
above figure. Each Sidetree node provides service endpoints to perform operations (e.g. Create,
Resolve, Update, and Delete) against DID Documents. The blockchain consensus mechanism

D4.2: Vertical Planes - second version

© ARCADIAN-IoT Consortium 2021-2024 Page 22 of 142

helps serialize Sidetree operations published by different nodes and provide a consistent view of
the state of all DID Documents to all Sidetree nodes, without requiring its own consensus layer.
The Sidetree protocol batches multiple operations in a single file (batch file) and stores the batch
files in a distributed content-addressable storage (DCAS or CAS). A reference to the operation
batch is then anchored on the blockchain. The actual data of all batched operations are stored as
one. Anyone can run a CAS node without running a Sidetree node to provide redundancy of
Sidetree batch files. The Transmute Technologies Sidetree specification [16] is in line with the
approach that is being investigated to serve ARCADIAN-IoT and meet the requirement to use the
Permissioned Blockchain as a trust anchor for decentralized identity management.
Sidetree supports Create, Update, Recover and Deactivate (CRUD) operations received at a
Sidetree API interface. Valid operations are added to the batch writer queue and to the DID cache.
Batch writer will then batch multiple Sidetree operations together and store them in Sidetree batch
files, over the CAS Interface, as per Sidetree file structure specification.
Next, Sidetree batch file information will be stored into anchor index by a witness function onto
the bockchain. The blockchain anchoring system provides a linear chronological sequencing of
operations, which the protocol builds on to order DID PKI operations in an immutable history all
observing nodes can replay and validate. It is this ability to replay the precise sequence of DID
PKI state change events and process those events using a common set of deterministic rules,
that allows Sidetree nodes to achieve a consistent view of DIDs and their DID Document states,
without requiring any additional consensus mechanism.
The Observer listens for the blockchain events to identify Sidetree operations, then publishes the
operations into data structures that can be used for efficient DID resolutions.

2.1.2.1.3 Integration with Self-contained DID Methods

These type of DID Methods setup their own DIDs independently of any 3rd party (be it centralized
or decentralized). This type of DID Method is also suitable for most private relationships between
people and/or organizations, and it is also cheap and easy to use and well maintained whilst
preserving all the security aspects necessary.

• did:key [17]

This is a non-registry based DID Method based on expanding a cryptographic public key into a
DID Document. This approach provides a simple as possible implementation of a DID Method
that is able to achieve many, but not all, of the benefits of utilizing DIDs.
While DLT-based DID Methods and more centralized DID Methods provide strong system control
guarantees, the general approaches tend to be expensive to setup and operate, whereas use
cases requiring DIDs may not require this. For example, a DID that will only be used for a single,
ephemeral interaction might not need to be registered, updated, or deactivated.
In summary, it is not necessary to store a DID Document associated to this identifier on any DID
registry, this is possible due to this method including the public key used in the DID identifier
directly. It consists of the did:key prefix, followed by a Multibase base58-btc encoded value that
is a concatenation of the Multicodec identifier for the public key type and the raw bytes associated
with the public key format.
The disadvantage, however, is that it cannot be modified or updated, so if it were to somehow be
hacked and another person got control of the corresponding private key it would not be able to
be recovered in any way.

• did:peer [18]
This is a rich DID method that has no blockchain dependencies and implements a verifiable data
registry synchronization protocol between peers. Therefore, it is similar to did:key in that it does
not need a distributed or centralized ledger but provides the key information in the did method
itself and also a version number so that the DID has an initial inception version 0 when it is created
without did doc and then the genesis version 1 adds the did doc.
It seems that parties using peer DID docs could just store raw DID docs. However, any time a
DID doc evolves, proof that the evolution is authorized must be found in the DID doc's previous
state. If an agent is offline for an extended period (e.g., a phone is lost in the couch cushions for

D4.2: Vertical Planes - second version

© ARCADIAN-IoT Consortium 2021-2024 Page 23 of 142

a week), multiple evolutions may have occurred by the time it reconnects and it cannot accept the
latest state of the doc without validating the sequence of changes it underwent to get there.
Agents must be able to prove to one another that the state they hold is correct. This means that
updatable peer DID docs need to be associated with some type of backing storage that adds
metadata and history to the simple content of the docs themselves.
Also, as the DID evolves, the subject of a peer DID can update their associated DID document
with anyone who knows the DID—one or more agents of the peer(s), or agents of the subject.
This operation is more important in the peer DID method than in most other methods, because a
loose collection of decentralized peers may include many different views of current state, caused
by inconsistent and incomplete connectivity within the peer group.
The DIDCOMM protocol supports the Peer DID protocol and it is also employed in the
Hyperledger Aries SSI Framework discussed in section 3.1. However, it is not supported out-of-
the-box with other SSI implementations that may use alternative protocols such as SIOP.

2.1.2.1.4 Verification Method Support

The verification method is supported in DID Docs so that a proof can be independently verified.
For example, a cryptographic public key can be used as a verification method with respect to a
digital signature; so that it verifies that the signer possessed the associated cryptographic private
key. This is the basis of all SSI validations for Verifiable Credentials proofs to validate the issuer
and the presentation proofs to validate the holder.
The DID Methods support the creation of DIDs that make use of key algorithms used for validating
these proofs and it is the SSI framework that must also support them when performing the
validation of issued VCs and their presentation.
It is seen that ed25519S and EcdsaSecp256k1 are common key signing algorithms supported by
the DID Methods verification as analysed in the previous sections, and therefore the SSI
Framework under discussion in section in 3.1 should ideally support both of these at least for
verification and at least one of them for presentation.
Privacy Preserving Verification Methods through BBS+
There is a desirable requirement to support privacy preserving proofs e.g. to support ZKP and
other types of privacy preserving measures, as discussed on a leading SSI solution provider´s
blog [21] and outlined below:

− Selective Disclosure – this allows a credential holder to choose which subset of
credential attributes are revealed to a verifier, while the rest remain undisclosed.

− Signature Blinding – this allows the issuer’s signature, which is a unique value and
therefore a correlating factor, to be randomized before it is shared with a verifier.

− Private Holder Binding – this allows a credential to be bound to a holder without creating
a correlating factor for the holder that needs to be revealed upon presentation.

− ZKP Predicates – these allow hidden values to be used in operations with a value
provided by the verifier. For example, predicates can be used to prove that the holder’s
bank account balance is above a certain threshold, without revealing the balance.

The BBS+ signature suite has been developed to provide the capability of zero knowledge proof
disclosures. However, due to the cryptographic complexity and also so to ease interoperability
the BBS+ with LD-Proofs cryptographic specification [6], the ZKP Predicates were dropped to
support the other much sought after privacy-enabling features of selective disclosure, non-
linkability of VC signatures and credential holders, as described above.
It has been noted that, as BBS+ supports privacy-respecting features indicated above, as well as
the use cases where the whole Verifiable Credential has to be presented, it is the common
denominator VC format signature suite to support all use cases.
It is therefore a most desirable requirement that the SSI Agents Issuing VCs for persons should
support this as well as to support the signature proof validation, and that the DID Methods to be
employed in this scenario in ARCADIAN-IoT supports this as a verification method in the DID
Doc.
This functionality is planned for the second prototype and therefore not detailed in design
specification of section 2.1.3.

D4.2: Vertical Planes - second version

© ARCADIAN-IoT Consortium 2021-2024 Page 24 of 142

2.1.2.1.5 DID Authentication

Authentication of decentralized identifiers is achieved by providing proof of the private key as
touched upon in the previous section. Considering the goals of ARCADIAN-IoT for decentralized
identifiers to support a standards based Self-Sovereign Identity approach then the authentication
of all entity (Persons, IoT Devices, Services) identities in the ARCADIAN-IoT framework is aimed
at being provided by Verifiable Credentials (see section 3.1).

Therefore, the authentication of DIDs for persons and devices is not considered under this
component as it is not a main goal to provide decentralized identity authentication, but rather
under Verifiable Credentials as it depends rather for an SSI Agent to prove possession of
Verifiable Credentials based on its private key associated to its DID.
That said, where Verifiable Credentials are not found to be not suitable e.g. for constrained
devices, then alternatives based on “DID authentication” are proposed also in section 3.1.

Service Provider Authentication to the ARCADIAN-IoT Framework
As regards the authentication of a Service Provider towards the ARCADIAN-IoT framework
components, it is proposed to make use of a lightweight public DID authentication outside of the
Self-Sovereign Identity standards-based approach. This was not initially foreseen in the KPIs for
decentralized identifiers; however, this fulfils another objective for Service Provider services to
securely identify and authenticate themselves.
As Service Providers should be able to fully control their own public DIDs in a fully autonomous
way, it is seen that the DID:WEB method presented in section 2.1.2.1.1 is the ideal way to do this,
with little implementation overhead needed.
HTTP Signatures [39] is the protocol proposed to validate all external API calls to the ARCADIAN-
IoT framework components as being signed by a registered Service Provider.

Service Provider registration to ARCADIAN-IoT Framework
For ARCADIAN-IoT framework to support SP authentication (see previous subsection) it is
needed to first register in the framework as a Service Provider organisation, and this is proposed
to be handled in an out-of-bound manner e.g. request by an administrator by company email.

2.1.2.2 Research findings and achievements

In the previous section it was investigated the state-of-the-art technology in the area of
Decentralized Identifiers and touching on their advantages and disadvantages considering the
suitability for ARCADIAN-IoT use cases.

As a result it is seen that DID methods based on Sidetree with integration into the blockchain is
a good candidate for managing public Decentralized Identifiers due to its scalability and trusted
distributed architecture based on blockchain and IPFS. This would be suitable for IoT Devices
and SSI Issuers and the ARCADIAN-IoT Framework SSI Agent that can benefit from public
DIDs.

The use of DID:WEB is also seen as a good way for the Service Provider and their services to
support DIDs in an independent manner outside the framework and to establish trusted
registration to the ARCADIAN-IoT Framework.

For supporting SSI Wallets it is preferred the use of peer DIDs to provide an increased level of
privacy to the end user.

It is also identified above the use of BBS+ signatures as the ideal way to support ZKP privacy
preserving measures.

D4.2: Vertical Planes - second version

© ARCADIAN-IoT Consortium 2021-2024 Page 25 of 142

2.1.2.3 Produced resources

ATOS have implemented a sidetree node integrated with private Ethereum and hosted by ATOS
for integration with the first prototype.

2.1.3 Design specification

2.1.3.1 Sub-use cases (Recommended)

2.1.3.1.1 IoT-Device´s DID Management

The creation and management of public DIDs for IoT Devices, supported by blockchain
Note: The IoT Device DID operation will be supported in the final prototype P2.

2.1.3.1.2 ARCADIAN-IoT Framework SSI Agent´s DID Management

The creation and management of public DIDs for the ARCADIAN-IoT SSI Agent, supported by
blockchain.

2.1.3.1.3 Service Provider´s DID WEB Management

The management and hosting of Public DIDs through the DID WEB method through hosting of
the associated DID Docs is fully under the control of the SP organisation that exposes it on a
public endpoint.

2.1.3.1.4 Person´s DID Wallet Management

The public / private key pair for a user´s wallet is created at the initial loading of the wallet app
with the public key communicated as part of the Peer DID protocol [41].

2.1.3.1.5 DID Authentication for Service Provider service access to the
ARCADIAN-IoT framework

API calls to the ARCADIAN-IoT Framework will be secured by validating them as being signed
by organisation decentralized identifiers registered in the framework.

2.1.3.1.6 Register Service Provider to the ARCADIAN-IoT framework

It is needed to register Service Provider organisation´s public decentralized identifier in the
ARCADIAN-IoT framework. This is handled out-of-band where a SP administrator will email to
ARCADIAN-IoT administration their request to add their public Decentralized Identity to the
ARCADIAN-IoT framework.

2.1.3.1.7 Register Service Provider Service to the ARCADIAN-IoT

Once an SP has been registered in ACADIAN-IoT the SP can automatically register their
services in the framework with a public DID associated to the service.

2.1.3.1.8 Delete a registered Service Provider to the ARCADIAN-IoT
framework

It is needed to delete a registered Service Provider organisation´s public decentralized identifier
in the ARCADIAN-IoT framework.
This is handled out-of-band where a SP administrator will email to ARCADIAN-IoT administration
their request to delete their public Decentralized Identity to the ARCADIAN-IoT framework. This
decision may also be taken by the ARCADIAN-IoT administration. All SP Services must first be
deleted before the SP can be deleted.

D4.2: Vertical Planes - second version

© ARCADIAN-IoT Consortium 2021-2024 Page 26 of 142

2.1.3.1.9 Delete a registered Service Provider Service to the ARCADIAN-
IoT

Once an SP has been registered in ARCADIAN-IoT the SP can automatically delete their register
services in the framework with a public DID associated to the service. If there still exists registered
users or IoT-Devices for the service, then it cannot be deleted.

2.1.3.2 Logical architecture view

2.1.3.2.1 Public DID published on Sidetree for IOT Devices &
ARCADIAN-IoT Agent

To support public decentralized identifiers in ARCADIAN-IoT framework as discussed in section
2.1.2.1.2 the sidetree specification is implemented as per the following logical design. The use of
public DIDs published over sidetree in ARCADIAN-IoT is limited to the ARCADIAN-IoT framework
SSI Agent in the first prototype where it acts as an issuer and verifier. In the second prototype IoT
Devices will also be issued with public DIDs over sidetree.

D4.2: Vertical Planes - second version

© ARCADIAN-IoT Consortium 2021-2024 Page 27 of 142

Figure 3 - Public DIDs published on Sidetree Node based on Transmute Sidetree.js Ref [38]

The sidetree node shown components are described below:

Batch Scheduler: This component schedules the writing of new DID operation batches
containing CREATE, UPDATE, RECOVER, DEACTIVATE operations.

D4.2: Vertical Planes - second version

© ARCADIAN-IoT Consortium 2021-2024 Page 28 of 142

Observer: This component observes the incoming Sidetree transactions (batch hashes)
published on the blockchain and processes them. The observer reads the observed published
batch file from the CAS and stores a local copy of it in the Operation store.

Resolver: This component resolves a DID resolution request from the locally stored Operation
Store by fetching and compiling all operations that were performed on that DID, as stored in the
Operation Store.

Blockchain Client (REST Interface): This component provides a blockchain agnostic interface
to provide trust anchor with hash of the batch operation written to the blockchain. The current
implementation supports integration with a private Ethereum blockchain network.

CAS Client: This component provides the interface to a hash-based storage interface that sidetree
nodes use to publish their DID operation batches so to be retrieved by all sidetree node observer
components for network-wide local persistence of all batch operations.

Transaction Store (MongoDB): This component keeps a local record of all transactions.

Operation Store (MongoDB): This component keeps a local record of all batch operations so to
aid quick resolving of DIDs and checking of the integrity of the DID operations to reconstruct the
latest DID Doc state.

2.1.3.2.2 Public DID published on DID Web for Service Provider
authentication

To support Service Provider (SP) onboarding to the ARCADIAN-IoT framework and
authentication to the framework´s services each SP organisation will host their on DID Doc as per
the DID:WEB specification presented in section 2.1.2.1.1.

Figure 4 - Public DIDs hosted on Service Provider´s DID:WEB endpoint

D4.2: Vertical Planes - second version

© ARCADIAN-IoT Consortium 2021-2024 Page 29 of 142

In the above figure it is seen that each SP exposes its own DID Doc on a public endpoint to
publish the public key on a well-known address so that the ARCADIAN-IoT framework can get
easy access to it to authenticate any API call it makes to the ARCDAIAN-IoT framework.
A non-normative example is given below for a Service Provider DID, as per the DID:WEB
specification [10] and web address it resolves to:

Example SP DID:
did:web:example.com

Resolves to: https://web:example.com/.well-known/did.json

As long as the SP is registered, and the API call signature is validated it will be considered
authenticated and authorised to access the ARCADIAN-IoT service.
Additionally, each SP service will have its own DID as per the following non-normative example:

Example DID:

did:web:example.com:service:drone_buddy

This DID WEB resolves to the following end point where it can be parsed:

https:// example.com/service/drone_buddy/did.json

An example of the DID Doc exposed on the above address is given below, noting that
currently only the RSA key verification is supported for DID WEB:

{

 "@context": [

 "https://www.w3.org/ns/did/v1"

],

 "id": "did:web:example.com:service:drone_buddy",

 "verificationMethod": [

 {

 "type": "RsaVerificationKey2018",

 "id":
"did:web:example.com:service:drone_buddy#ECEA8_A1SlddIICzj4SFS_CJEwxMhZgwgitO6
HPiaqk",

 "controller": "did:web:example.com:service:drone_buddy",

 "publicKeyPem":
"MIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEAxZ3Sjwi2hdw80jQO8f/jTPMjtcJU
imRR8wHkEPAyQ+0rcCxmv87xK8kyemr1kns3A6ow8Pf1L0mzBmX4XWpzGPkEtRISBz/I6IC
EwdWK/QQSHirDFSGF8Bo6C8EnN+Cwq5ck+Vbr2hzNfY6LQmuy2hvI5EYLuesMQRd5IBSB
LVkyLdlcwrQUUKfT1kxPXS2ILG5GtVU6sWSngZl8JlQLg7pbuzzugCgKVjgmtkWwoTiqbFs7jY

D4.2: Vertical Planes - second version

© ARCADIAN-IoT Consortium 2021-2024 Page 30 of 142

8P0XZ233tXeG/KMDMZsPlRdSlBzq5zOBCeNpFzTpbPXUD7VaEXHOS8Ox6EYCuJG2Lt6n
+iC8qe5mOH+NU5Wjd1pjipLX1SFkMmTQIDAQAB"

 }

],

 "authentication": [

"did:web:example.com:service:drone_buddy#ECEA8_A1SlddIICzj4SFS_CJEwxMhZgwgitO6
HPiaqk"

],

 "assertionMethod": [

"did:web:example.com:service:drone_buddy#ECEA8_A1SlddIICzj4SFS_CJEwxMhZgwgitO6
HPiaqk"

]

 }

}

The API call signature makes use of HTTP Signatures specification [39] to authenticate the API.
HTTP Signatures enables the ARCADIAN-IoT Framework services to cryptographically
authenticate all API calls from SPs while ensuring that the call was not tampered with during
transit by making use of digital signature in the HTTP Authorization Header.
Note that HTTP Signatures provide full end-to-end sender authentication and message integrity
which is an advantage over mutual TLS authentication that typically has to be terminated at
gateway or proxy nodes before reaching its end destination and not all proxies or servers support
client certificates.
Finally, as the public key is published in the organisation´s DID Doc the HTTP Signature protocol
is essentially authenticating the organisation´s DID through proving it has its private key
counterpart.
For more information on the HTTP Signature client and server implementations see section
2.1.3.4.2.

2.1.3.2.3 Privacy preserving Peer DID for Mobile Wallets

Peer DID conform to the W3C Decentralized Identity specification [40] and are able to be used
independently of any central source of truth, and are aimed at facilitating private relationships
between people, organizations, and things. In ARCADIAN-IoT Peer DIDs are used to support
pairwise DIDs so that a user´s wallet will establish connections to entities in a pair-wise fashion
as per the figure below.

D4.2: Vertical Planes - second version

© ARCADIAN-IoT Consortium 2021-2024 Page 31 of 142

Figure 5 - Privacy preserving peer DID created in SSI wallet per connection

The SSI Wallet implemented in the Ledger uSelf Wallet provided by ATOS, supports pair-wise
peer DIDs as per the above figure. More information on Ledger uSelf Wallet is found in section
3.1.

2.1.3.3 Sequence diagrams

2.1.3.3.1 Public DID published on Sidetree

Public DID operations are fully implemented and handled by the initial setup and configuration
SSI Agents and their interaction with a Sidetree Node. As both components are provided by ATOS
the sequence diagram is not fully needed to show integration with other partner components.
The SSI Agents will be configured upon initial restart to request a public DID from a Sidetree
Node.
Sequence diagrams involving the SSI Agent and facilitated by the public DID can be found in
section 3.1.

2.1.3.3.2 Public DID published on DID WEB

There is no sequence flow applicable for this DID creation and management. The organisation
administrator can expose the DID Doc end point on the organisation´s web.

2.1.3.3.3 Peer DIDs for Mobile Wallet

There is no sequence flow applicable for this DID creation and management. Other sequence
diagrams involving the SSI Mobile Wallet and facilitated by the peer DID can be found in section
3.1.

D4.2: Vertical Planes - second version

© ARCADIAN-IoT Consortium 2021-2024 Page 32 of 142

2.1.3.4 Interface description

2.1.3.4.1 Sidetree Interface

The Sidetree Node supports the DID Operations specified in the sub-use cases section 2.1.3.1.

The CREATE DID Operation is supported in the first prototype and is called with the public keys
needed to be published with the Decentralized Identity.
Below is a non-normative example of the public keys provided in the CREATE DID Operation:

{
 "@context": "https://w3id.org/did/v1",
 "publicKey": [
 {
 "id": "#primary",
 "usage": "signing",
 "type": "Ed25519VerificationKey2018",
 "publicKeyJwk": {
 "kty": "OKP",
 "crv": "Ed25519",
 "x": "PC20Ganm5IKCJffoDV7zCK2_LyLrDMWOKy43HXlSWcQ",
 "d": "sjDaMXAeGSJTUJBwP7Ft36Yc7GF93Ee3Cjw-9Go8zhc",
 "kid": "OtZJamqSEzJLSAAEcVK3Un0x6C7sNb7tbpBoxim1hlQ",
 "use": "sig"
 }
 },
 {
 "id": "#recovery",
 "usage": "recovery",
 "type": "Ed25519VerificationKey2018",
 "publicKeyJwk": {
 "kty": "OKP",
 "crv": "Ed25519",
 "x": "OL20Ganm5IKCJffoDV708K2_LyLrDMWOKy43HXlSW56",
 "d": "xxDaMXAeGSJTUJBwP7Ft9yYc7GF93Ee3Cjw-9Go8zbd",
 "kid": "34ZJamqSEzJLSAAEcVK3UPvx6C7sNb7tbpBoxim1h89G",
 "use": "sig"
 }
 }
]
}

2.1.3.4.2 HTTP Signature Interface

Each SP that wishes to make use of ARCADIAN-IoT framework component services must
authenticate as a client conforming to the HTTP Signatures specification [39].
The ARCADIAN-IoT component services that offer an API interface to be called by external
Service Providers must authenticate the client call implementing HTTP Signature as a server
conforming to the HTTP Signatures specification.

2.1.3.5 Technical solution

2.1.3.5.1 Deployment architecture view

Sidetree node deployment:

D4.2: Vertical Planes - second version

© ARCADIAN-IoT Consortium 2021-2024 Page 33 of 142

A Sidetree Node is deployed in the ARCADIAN-IoT Framework and integrates with a Private
Ethereum Network. The SSI Agent residing in the IoT Devices will implement the interface to the
Sidetree node to create a DID over the sidetree node upon initialialsation of the device.

Figure 6 - ARCADIAN-IoT Framework Sidetree Node deployment

2.1.3.5.2 API specification

The Sidetree DID Operation APIs are called by the SSI Agent software provided by ATOS.

2.1.4 Evaluation and results

The results for the first prototype are to provide:

• A Decentralized Identifier created by the Sidetree Node deployed in local test
environment can be resolved here: https://resolver.prod.ari-
bip.eu/1.0/identifiers/did:elem:uself:EiCx0IjXVtxuFmVFlUEgifx8rRLBjwmZ0Zy-
5xtLuWgsOw

• A Decentralized Identifier based on DID:WEB is resolved here: https://resolver.prod.ari-
bip.eu/1.0/identifiers/did:web:uself.prod.ari-bip.eu:testing:test

The resolved DIDs available on the URL links are validated against the W3C Decentralized
Identifier specification [3].

https://resolver.prod.ari-bip.eu/1.0/identifiers/did:elem:uself:EiCx0IjXVtxuFmVFlUEgifx8rRLBjwmZ0Zy-5xtLuWgsOw
https://resolver.prod.ari-bip.eu/1.0/identifiers/did:elem:uself:EiCx0IjXVtxuFmVFlUEgifx8rRLBjwmZ0Zy-5xtLuWgsOw
https://resolver.prod.ari-bip.eu/1.0/identifiers/did:elem:uself:EiCx0IjXVtxuFmVFlUEgifx8rRLBjwmZ0Zy-5xtLuWgsOw
https://resolver.prod.ari-bip.eu/1.0/identifiers/did:web:uself.prod.ari-bip.eu:testing:test
https://resolver.prod.ari-bip.eu/1.0/identifiers/did:web:uself.prod.ari-bip.eu:testing:test

D4.2: Vertical Planes - second version

© ARCADIAN-IoT Consortium 2021-2024 Page 34 of 142

2.1.5 Future work

The Sidetree Node is currently under integration testing with the ARCADIAN-IoT Framework´s
SSI Agent for creating a public Decentralized Identifier. Once complete, this will support the initial
prototype.

The Sidetree Node has also been integrated recently with a private instance of Ethereum and not
with Hyperledger Fabric which is the permissioned blockchain technology selected for the
ARCADIAN-IoT framework. It will be explored the integration of Sidetree with Hyperledger Fabric
in Task 3.1. It will be also further investigated an alternative to support Decentralized Identifiers
on the Permissioned Blockchain making use of the Publisher Smart Contract developed for
ARCADIAN-IoT Framework in Task 3.1.

The implementation of BBS+ signatures will be pursued to provide ZKP privacy preserving
measures.

The final work is to then continue to deploy in the ARCADIAN-IoT Framework for the piloting sites
for the final prototype.

D4.2: Vertical Planes - second version

© ARCADIAN-IoT Consortium 2021-2024 Page 35 of 142

2.2 eSIM – Hardware-based identification and authentication (TRU)

2.2.1 Overview

2.2.1.1 Description

The eSIM is the evolution of the well-accepted and widespread SIM card technology to an

embedded format with remote provisioning and management capabilities, while maintaining its

security processor characteristics. Its ecosystem provides a fully digital management of devices’

connectivity and is in itself an enabler of innovation in terms of potential for automation (e.g. for

provisioning and management of a large number of devices connectivity according to

programmatic rules) and integration with other relevant technologies (e.g. artificial intelligence, or

reputation systems, triggering actions in the devices secure element). It also enhances security

by design, given that threats related with the use of the secure element in a different device from

the one it was provisioned to are almost impossible (the secure element is embedded/soldered

at devices hardware).

Particularly, in the context of ARCADIAN-IoT, the eSIM component will act simultaneously as:

a. Secure connectivity enabler for devices and people – enabling the connectivity of the

domains’ IoT and personal devices through the provisioning of an ARCADIAN-IoT eSIM

profile to the eUICC (hardware in the device that receives eSIM profiles).

b. Secure Element (SE) capable of storing identity and authentication credentials at devices

hardware level and use them in ARCADIAN-IoT network-based authentication, which is

part of the project multi-factor authentication process.

c. Root of Trust (RoT) with ability to contribute to Hardened Encryption and Attestation

processes, providing evidence that allows to infer data integrity and trust.

d. Local (edge/IoT device) authorization agent able of receiving trust information about

the device where the eSIM is and have specific actions of self-protection and self-

recovery.

eSIM will be, therefore, a relevant security agent for connected devices with several roles as

depicted in

Figure 7. In this section, which belongs to identity management, the report of the ongoing eSIM-

related work will focus on its role related with the item b. above.

D4.2: Vertical Planes - second version

© ARCADIAN-IoT Consortium 2021-2024 Page 36 of 142

Figure 7 - eSIM component overall view6

ARCADIAN-IoT authentication will rely on a multi-factor process to identify and authenticate users
and devices (section 2.4). The network-based authentication, focused in this section, is one of
these factors and it presents the framework with a novel method to authenticate an eSIM-
equipped device in a third-party service by leveraging cellular networks authentication 7, whose
credentials and processes are securely stored at hardware level in the device eUICC.
The network-based authentication component leverages the standardized and widely used
authentication mechanism of cellular networks, well-accepted as secure for decades. Every
device that connects to a cellular network has assigned a unique identity and a set of processes,
e.g. of challenge-response between the device and the network; and of authentication and
cyphering8. These well-accepted security processes rely on SIM technologies to have stored the
information and processes necessary, in a hardware secure element.
By leveraging this mechanism, the network-based authentication component described in this
section aims to extend the well-accepted standard of authentication of devices in cellular networks
(state-of-the-art), to a new form of identification and authentication of devices and persons in third-
party services (beyond state of-the-art). Regarding persons, we envision that their identification
will be attached to the one of their personal devices (stored in the secure element of the personal
devices), and that the attachment process (person to personal device) will happen in the
registration moment.
TRU already has a patented9 experimental proof of concept of this technology in TRL 3 (TRL at
the beginning of the project) and aims to bring it to TRL 6 within the context of ARCADIAN-IoT,
researching to enhance and demonstrate it in at least two IoT domains targeted in the project.
Another objective is to make this technology agnostic to the IoT devices characteristics in terms
of processing power, energy consumption and communication protocols used (e.g. being a
technology ready for IoT use cases with high computing power demands; and ready to IoT use
cases with high constraints of energy, computing or communication (e.g. a device whose battery
needs to last for 10 years, with computing power just to read a sensor and send it to a cloud
provider once a week).

6 Diagram from D2.5 depicting eSIM multiple roles in ARCADIAN-IoT
7 3GPP TS 43.020 version 15.0.0 Release,
https://www.etsi.org/deliver/etsi_ts/143000_143099/143020/15.00.00_60/ts_143020v150000p.pdf
8 Global Information Assurance Certification, The GSM Standard (An overview of its security),
https://www.giac.org/paper/gsec/1499/gsm-standard-an-overview-
security/102787#:~:text=GSM%20makes%20use%20of%20a,a%20ciphering%20key%20(KC)
9 https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2021224624&_cid=P10-L12DVI-41405-1

D4.2: Vertical Planes - second version

© ARCADIAN-IoT Consortium 2021-2024 Page 37 of 142

2.2.1.2 Requirements

The requirements10 for the network-based authentication component are the following:

• Leverage cellular network authentication procedures to authenticate devices and
persons in third party services (e.g. IoT service providers).

• Have a solution agnostic to the device characteristics and to the third-party to which
the device needs to authenticate to.

A natural assumption that exists is that ARCADIAN-IoT’s IoT and personal devices that will make
use of the network-based authentication component need to support eSIM (or, alternatively, any
other form of SIM).

2.2.1.3 Objectives and KPIs

The network-based identification and authentication in third-party services contribute to the
accomplishment of the following objectives and KPIs.

KPI scope

In the context of the objectives of enabling security and trust in the management of objects and
persons’ identification, we aim to use eSIM to support an identity approach at hardware level, which
should be a robust identity mechanism for devices; and enable an identification approach for
persons to be joint with others for a set of 3 simultaneous identification approaches for persons.
In this sense, the scope of this component focuses on leveraging cellular authentication processes,
where subscribers’ identity and identification process is securely stored in the UICC/eUICC, to
perform a zero-touch authentication of IoT devices and persons in third-party services.
Measurable Indicator

1. Leverage cellular network authentication processes in a new zero-touch authentication of IoT
devices in third-party services (Y/N)
2. Number of different devices where the innovation is demonstrated
3. TRL
Target value (M30) Current value (M20)

1. Y
2. At least 2 (1 IoT device and 1 personal
device)
3. 6 (prototype demonstrated in relevant
environment)

1. Y
2. 1
3. 4 (component validation in laboratory)

2.2.2 Technology research

TRU’s patent previously mentioned refers to a technology in which the device that wants to
authenticate needs to request a signed token from a core network service for that purpose. This
core network service would verify the device identity and authentication status, meaning, if it is a
known subscriber that already authenticated to the network and, if so, it would issue a signed and
protected token (JWT) to the device so it could use it in the third-party it wanted to authenticate
to.
While functional, this process is demanding for some IoT devices, e.g. constrained devices with
battery that needs to last for years. Apart from the previous process, devices would also need to
use the right protocol to communicate with the (or with each) third party. The research in the
current period focused on developing a solution that removed the aforementioned burden to IoT

10 Requirements were updated from the ones described in previous deliverables to better fit the
component objectives

D4.2: Vertical Planes - second version

© ARCADIAN-IoT Consortium 2021-2024 Page 38 of 142

devices as possible, aiming for a technology as agnostic as possible to the devices’
characteristics and communication protocols.

2.2.2.1 Background

Open ID Connect11 (Figure 8) inspired many of the work done in this component research. In this
protocol there are three key actors: (1) the Service Provider that provides a service to clients but
does not authenticate them directly, (2) the Client that needs to be authenticated to access the
Service Provider and (3) the ID provider that can authenticate clients on behalf of the Service
Provider.

Figure 8 - Open ID connect architecture

The protocol starts when the client authenticates itself to the ID provider. This provider then issues
an ID token that proves the client identity. The client then uses this ID token to authenticate itself
to the Service Provider that can then provide or deny access to its service based on this
authentication.
In our research, considering that the ID Provider is the network provider, we are extending this
concept, studying the impact of avoiding communication flows, which can enhance energy-related
matters in IoT devices.

2.2.2.2 Research findings and achievements

The research performed allowed to find what seems to be a suitable technology for leveraging
cellular network authentication to authenticate cellular devices to third party services, optimized
for being more agnostic to the device or communication protocol.
Departing from the Open ID connect flow (Figure 8), the current hypothesis/approach is to place
the ID Provider between the client and the service provider, to whom the client wants to
authenticate to. Figure 9 depicts exactly this with the Notarizer (ID provider) placed between the
device and the service provider. This reduces the number of flows that the device needs to
execute and allows to have communication intelligence in the core network function, meaning, to
adapt the communication protocol to what is requested by the third party in a network function,
removing thus the burden of having more than one communication protocol configured at devices
if they need to communicate to more than one third-party. This hypothesis doesn’t add any
shortcoming, because the core infrastructure of the network would assume these two roles in any
of the cases: the ID provider role; and the means for the devices to reach the internet services
(and the Service Provider).
The unique flow needed in the current approach is the authentication request from the device,
informing the third-party it wishes to authenticate to. The core network component verifies the

11 Final: OpenID Connect Core 1.0 incorporating errata set 1

https://openid.net/specs/openid-connect-core-1_0.html

D4.2: Vertical Planes - second version

© ARCADIAN-IoT Consortium 2021-2024 Page 39 of 142

identity proof and, if valid, it generates and appends the ID token to the authentication request
and forwards it to the third-party service.
The service provider (or ARCADIAN-IoT framework as will be seen in the multi-factor
authentication section) will need to have a component able of verifying the validity of the ID token
provided (e.g. validating the signature of the ID provider).
Table 1 depicts the current achievements in terms of the status of the prototyping of the described
technology.

2.2.2.3 Produced resources

The technology produced so far was described in the previous section and is specified in Table
1.

Table 1 – Current status of the network-based identification and authentication component

Subcomponent Brief description Prototyping status

1 Notarizer Validates in the network core a device
identity as being from a known network
subscriber with successful GSM
authentication. If successful, this
component generates and appends an
ID token to the authentication request
and forwards it to the target third-party
services

The current prototype has
the functionality described
before.
Functional testing in lab
environment with a real
device was successful.

2 Network-based
authenticator

Confirms the validity of the provided ID
token

Prototype with successful
functional testing.

The above-mentioned subcomponent prototypes were developed using standard technologies
(JWT12 for the ID token, and developed in Rust / GO for the Notarizer – both languages were
used for potential future comparison in what concerns performance and scalability).

2.2.3 Design specification

2.2.3.1 Logical architecture view

This section depicts the network-based authentication logical architecture, namely its positioning
within ARCADIAN-IoT framework.
Looking at Figure 9, we start by assuming that the device has a valid ARCADIAN-IoT eSIM
provisioned and active (subscriber valid in Truphone’s network), and it is already authenticated
and attached to the cellular network according to the regular and well-accepted GSM process.
After, the beyond state-of-the-art authentication process starts when the device needs to send a
message to the third-party (IoT service provider) it intends to authenticate to. The device
communicates with the Notarizer, subcomponent that is positioned in the core network, sending
it the authentication request with the intended destination. The Notarizer uses the device’s
network identifiers (previously used to authenticate in the network) to confirm its identity in a
subscriber database at core network infrastructure. In case of validation success, the Notarizer
crafts a Network ID Token, which allows to identify and authenticate, with the same level of
security and trust of the cellular network authentication, the network subscriber, or the device in
this case, at the compliant third-party. This Network ID Token will then be sent to the compliant
third-party, who can then confirm its validity by sending it to a Network authenticator positioned
in ARCADIAN-IoT framework. This authenticator validates the token and sends the result to

12 https://www.rfc-editor.org/rfc/rfc7519

D4.2: Vertical Planes - second version

© ARCADIAN-IoT Consortium 2021-2024 Page 40 of 142

ARCADIAN-IoT multi-factor authentication, to join the result with the one of other simultaneous
authentication factors (further details in the authentication section). If all the authentication factors
are verified successfully, an ID token is generated and returned to the IoT service provider, who
returns it to the device for its normal authenticated operation.

Figure 9 - Architecture of the Network-based authentication in third-party services

2.2.3.2 Interface description

In terms of interfaces, the network-based authentication subcomponents, the Notarizer, in the
core network, and the network-based authenticator, in ARCADIAN-IoT framework, interact mainly
with the IoT service provider (with its software at the device) and with the multifactor authenticator,
which will be described in the section about authentication. Details about these interfaces can be

found in Table 2.

Table 2 - Network-based authentication interfaces

Sender Receiver
Communication
type

Content
exchanged

Status

Device (IoT or
personal)
service

Notarizer
(Network-
authentication
subcomponent)

RESTful API
Authentication
request

Done for P1

Notarizer
IoT service
provider
services

RESTful API
Authentication
request w/
network ID token

Done for P1

Multi-factor
Authentication

Network
authenticator
(Network-
authentication
subcomponent)

RESTful API
Network ID token
+ Information
about its validity

Done for P1

2.2.3.3 Technical solution

By leveraging the authentication mechanism already present in the cellular network, it is possible
to extend it by using the network operator to issue ID tokens, essentially extending the cellular
network authentication mechanism to an ID provider, capable of exporting its authentication to
any Service Provider that can trust the claims made by the cellular authentication service.

D4.2: Vertical Planes - second version

© ARCADIAN-IoT Consortium 2021-2024 Page 41 of 142

This technology is based on two widely used authentication mechanisms. Open ID Connect is
considered safe and reliable, and the GSM cellular authentication, which is widely well accepted.
The current solution is inspired in a patented work from Truphone13, which has a proof of concept,
considered to be in TRL 3 at the beginning of ARCADIAN-IoT project. With the research done in
we expect to take it to TRL 6, with its demonstration in three relevant IoT domains. One of the
identified areas of improvement is the solution adaptability to different IoT device characteristics,
namely energy constraints, research that is ongoing.
In ARCADIAN-IoT the network-based authentication will be integrated in a multi-factor
authentication schema, which will be described in the authentication section.

2.2.4 Evaluation and results

The current solution, particularly the core network function (Notarizer), is already working with
real devices (real network subscribers). The solution has been functionally tested using a
Raspberry Pi 4 Model B, connected to a Monarch GM01Q Module LTE Category M1 Evaluation
Kit. Test service provider services were also created for testing the solution end-to-end. Within
this lab setup the system functionally behaved as expected. The current solution, by reducing the
number of flows of OIDC, and allowing to adapt the communication protocol between the device
and the IoT service provider in a core network function, is more fit to constrained IoT devices.
Testing and evaluation efforts with two domain owners (real IoT service providers) is ongoing in
the scope of WP5.

2.2.5 Future work

According to the current research, the current solution seems to fulfil most of the KPIs defined to
this component. The focus on the next deliverable will be on increasing its TRL, mainly with its
integration and demonstration in at least 2 IoT service providers’ services (and the existent
devices). Therefore, TRU will be working with the IoT service providers to gather inputs for the
enhancement of the component. Also, the integration with ARCADIAN-IoT’s onboarding process
is ongoing and is part of the future work.

2.3 Biometrics (UWS)

2.3.1 Overview

The biometrics component adds another factor to identify persons entities, relying on their

biometrics such as face characteristics. This component will support person verification in two

main scenarios. First, face verification will be performed from the frontal camera of a smartphone

in order to start the smartphone app as part of the multi-factor authentication. Second, a more

challenging scenario is the face verification in a video recorded from an Unmanned Aerial Vehicle

(UAV). In this scenario the biometrics component will support facial verification considering

operational challenges such as high-altitude recordings, low pixel resolution of the faces

recorded, faces from different angles and any disturbance that the UAV may produce over the

flight.

In the context of ARCADIAN-IoT, the biometrics component will rely on a multi-factor

authentication process to identify the users that requests a particular service. This component will

authenticate a person from different distances.

13 https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2021224624&_cid=P10-L12DVI-41405-1

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2021224624&_cid=P10-L12DVI-41405-1

D4.2: Vertical Planes - second version

© ARCADIAN-IoT Consortium 2021-2024 Page 42 of 142

2.3.1.1 Description

The UWS Biometric component will be responsible for receiving a set of photos from the client

with the face that constitutes the database to perform face verification, this is named as

registration step. Then, the biometrics component performs identification in two main scenarios:

• Face verification from the frontal camera of the smartphone. The user should be identified

every time the app starts to request a service.

• Face verification from a camera attached to a drone. When a user requests an

authentication service, the component will process a video feed received from an

Unmanned Aerial Service (UAV). Internally, the first stage is to execute a face detection

algorithm to search for a face in the video. This is a Convolutional Neural Network-based

algorithm, and it locates and crops the faces that appear in the video. Immediately after,

the face verification algorithm will compare the face extracted against the one that the user

has previously stored in the database. The database only stores the features of the face

extracted from the raw images provided in the registration process, creating then, a safer

environment for the user. In addition, we will explore the possibility of providing together

with the identification result, the bounding box that represents the part of the scene where

the face has been identified to allow a GUI to create an overlay figure.

2.3.1.2 Requirements

After further analysis, the requirements specified in previous deliverable are modified not because
of any deviation but to achieve a higher level of detail. The following requirements are the ones
identified for the Biometrics component:

• The system requires several photos of the client’s face to perform face verification against
a video feed. These images should be shared with the biometrics in a user registration
phase.

• The algorithm requires the reception of a video feed coming from the drone in order to
allow the biometric algorithm to perform the face identification.

• The algorithm requires the reception of an image from the frontal camera of the user’s
smartphone to authenticate the user.

• The algorithm requires HD video resolution.

• The system requires GPU support to execute the algorithm efficiently.

• The algorithm requires adequate lighting to perform accurately.

• The system requires direct communication with the Authentication Component to provide
them with the required biometrics results.

• The system requires direct communication with the third-party provider to share the
current location of the user in the video.

2.3.1.3 Objectives and KPIs

The following four objectives ensures the quality of the biometrics component:

1) Secure storage of the client faces.
2) Accurate verification of the users.
3) Secure communication with the drone.
4) Secure communication with the DGA Service.

With the aim of fulfilling the objectives in the project agreement, the following KPIs will be used
to assess and validate the performance of the Biometrics component.

KPI scope

D4.2: Vertical Planes - second version

© ARCADIAN-IoT Consortium 2021-2024 Page 43 of 142

Low inference time for face verification algorithm.
Measurable Indicator

Frames per Second (FPS)
Benchmarking (OPTIONAL)

8 FPS
Target value (M30) Current value (M20)

16 FPS 16 FPS

KPI scope

End-to-End speed of the biometrics process.
Measurable Indicator

Frames per Second (FPS)
Benchmarking (OPTIONAL)

1.5 FPS
Target value (M30) Current value (M20)

5 FPS 1.5 FPS

KPI scope

High accuracy of the face verification algorithm at close distances (less than 2 meters).
Measurable Indicator

F1 score or mAP.

Benchmarking (OPTIONAL)

89.05% mAP
Target value (M30) Current value (M20)

Over 90% mAP 89.05% mAP

KPI scope

High accuracy of the face verification algorithm at far distances (more than 2 meters).
Measurable Indicator

F1 score or mAP.

Benchmarking (OPTIONAL)

65.23% mAP
Target value (M30) Current value (M20)

Over 70% mAP 68.23% mAP

KPI scope

Reliable verification of the face at close distances (less than 2 meters).
Measurable Indicator

False Acceptance Rate (FAR)

Benchmarking (OPTIONAL)

0.5% FAR
Target value (M30) Current value (M20)

Below 0.5% FAR 0.5% FAR

KPI scope

Reliable verification of the face at far distances (From 2 meters to 15 meters).
Measurable Indicator

False Acceptance Rate (FAR)

Benchmarking (OPTIONAL)

0.5% FAR
Target value (M30) Current value (M20)

Below 0.5% FAR 0.5% FAR

D4.2: Vertical Planes - second version

© ARCADIAN-IoT Consortium 2021-2024 Page 44 of 142

KPI scope

Cost-effective camera and drone platform (hardware only).
Measurable Indicator

Euros (€)

Benchmarking (OPTIONAL)

N/A
Target value (M30) Current value (M20)

500€ 500€

2.3.2 Technology research

Biometric identification has been widely applied to myriad of applications. In ARCADIAN-IoT
project, the application of biometrics is focused on drone-based identity management scenarios
by exploring AI/ML/data-based approaches in challenging operational conditions (e.g., distance
between face and individuals, angle between camera and individual, lighting conditions between
camera and individual) while considering necessary privacy preservation.
This drone-based Biometric component will verify a person (focusing on ARCANDIAN-IoT users
such as the drone pilots for authorisation and the user of the Drone Guard Angel use case service)
through analysing their facial characteristics even in challenging conditions introduced by the
operation of the drone such as non-frontal face angles and the complex surrounding
environments. The technology used in this regard is divided into three different parts: face
database, algorithm and machine learning execution platform.

2.3.2.1 Background

1) Faces database
As this component executes the biometrics authentication in two stages: face detection and face
verification. Both algorithms should be trained with it corresponding datasets.

• Face Detection Dataset. This dataset should cover images of people in different scenarios
where the location of their faces is labelled. This first step does not include face verification
only detection in the image. The dataset chosen is WiderFace. It is composed of 32,203
images with 393,703 faces labelled within the images. The images are divided into 61
different classes of events, such as: football, festivals, shoppers...

• Face Verification Dataset:
In order to perform face identification, the biometric algorithm needs to be trained. The process
of training is a highly compute-intensive task as it focuses on the extraction of key features of a
person's face. As various face features exist, a diverse database containing many people in
different environments is vital for the success of facial recognition. Another key factor is the quality
of the images in the dataset which is vital. As this system requires the identification of a person
from a drone, most of the images should be taken from a similar angle and distance (ideally from
a flying platform). The following table presents a summary of SOTA databases:

Dataset Size (images) Identities Drone Friendly Notes

DroneSURF14 441,000 58 people Yes Missing different
lightning conditions and
distance classification.

14 Kalra, I., Singh, M., Nagpal, S., Singh, R., Vatsa, M., & Sujit, P. B. (2019, May). Dronesurf: Benchmark
dataset for drone-based face recognition. In 2019 14th IEEE International Conference on Automatic Face
& Gesture Recognition (FG 2019) (pp. 1-7). IEEE.

D4.2: Vertical Planes - second version

© ARCADIAN-IoT Consortium 2021-2024 Page 45 of 142

LFW15 13,233 5749 people No Close range images.

Color
FERET16

14,126 1199 people No Close range images.

Table 3: Image data bases

2) Algorithm

Once the database is collected, it needs to be trained with an algorithm. This is one of the key
factors of the whole system as it should take into account several factors to obtain high
performance in terms of accuracy and speed. First, the optimal algorithm should be fast enough
to achieve real-time performance, and thus, be able to process every frame received from the
video feed. Second, the algorithm should be highly accurate to provide credibility to the
authentication component. The accuracy should be evaluated in different conditions to distinguish
the high and poor performance scenarios. Finally, this accuracy will be obtained in close-range,
as the drone will be flying few meters away from the client. In the following table, the algorithms
are compared in terms of speed, accuracy. A preliminary study regarding the accuracy at far
distances (between 5 and 15 meters) was also executed in order to evaluate the SOTA algorithms
when they are tested beyond the capabilities of the dataset (usually images from 1 to 5 meters).
In future, distance may also be interpreted as the size of a face in pixels as the lower quality the
farther the camera is.

Algorithm Speed (ms) Accuracy Far Distance Performance (2-15m)

ArcFace17 50 99.84% 64.93%

VGG-Face18 110 98.95% 74.67%

Dlib19 10 99.38% 60.54%
Table 4 - Algorithm accuracy

3) Machine Learning execution platform

Another key factor to be considered is the execution platform of the face recognition algorithm.

There are many different frameworks available in the literature although not all of them supports

the key aspects of real-time execution of algorithms. In the following table, four main platforms

are explored comparing in terms of 4 factors

Framework Execution
Environment

Code Deployment Compatibility (OS)

TensorFlow20 CPU / GPU Open Source Medium High

15 Huang, G. B., Mattar, M., Berg, T., & Learned-Miller, E. (2008, October). Labeled faces in the wild: A
database forstudying face recognition in unconstrained environments. In Workshop on faces in'Real-
Life'Images: detection, alignment, and recognition.
16 Phillips, P. J., Moon, H., Rizvi, S. A., & Rauss, P. J. (2000). The FERET evaluation methodology for
face-recognition algorithms. IEEE Transactions on pattern analysis and machine intelligence, 22(10),
1090-1104.
17 Deng, J., Guo, J., Xue, N., & Zafeiriou, S. (2019). Arcface: Additive angular margin loss for deep face
recognition. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp.
4690-4699).
18 Parkhi, O. M., Vedaldi, A., & Zisserman, A. (2015). Deep face recognition.
19 King, D. E. (2009). Dlib-ml: A machine learning toolkit. The Journal of Machine Learning Research, 10,
1755-1758.
20 Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo,
Zhifeng Chen, Craig Citro, Greg S. Corrado, Andy Davis,
Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow,
Andrew Harp, Geoffrey Irving, Michael Isard, Rafal Jozefowicz, Yangqing Jia,
Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dan Mané, Mike Schuster,
Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Jonathon Shlens,

D4.2: Vertical Planes - second version

© ARCADIAN-IoT Consortium 2021-2024 Page 46 of 142

PyTorch21 CPU / GPU Open Source Medium Medium

OpenCV22 CPU Open Source Easy Medium

SNPE23 Snapdragon Proprietary Medium Low

Table 5: Machine Learning frameworks

2.3.2.2 Research findings and achievements

The technologies presented in the previous section were compared in terms of datasets,
algorithms and execution platforms. These comparisons highlighted the strengths and flaws of
each technology/resource available in the state-of-the-art research.

In terms of the face database, DroneSurf is the most promising database to be used for training
of the biometrics algorithm. Nevertheless, it has two main flaws: First, the images are just
collected from 58 people. This means that the database is not diverse enough and more people
should be included. Second, in terms of scenarios, the database was created in good lightning
conditions and thereby an algorithm trained with DroneSurf will not perform accurately in a
challenging scenario. The main solution to complete this dataset are to manually record and label
new videos to include and mix available public datasets. The produced result is exposed in the
following section.

From the three face identification algorithms explored in the previous section, just two considers
the trade-off between speed and accuracy. ArcFace and Dlib are the most promising algorithms
in the literature to begin with. Although they perform accurately at close-range distances, there
are flaws when identifying users from far distances needed in our system. Therefore, innovation
is needed in the face identification algorithm. This produced result is also exposed in the following
section.

In order to execute the face identification algorithm, TensorFlow and PyTorch are the most
promising ML platforms. These two platforms have been determined to be the most suitable ones
as they are both open source and GPU compatible, besides, these two frameworks accept the
development of other models such as: face detection, face alignment and event the
implementation of super resolution techniques. Both platforms provide libraries to use their
framework for different languages (C, C++, Java, Python), nevertheless, the biometrics
component is only implemented in Python.

2.3.2.3 Produced resources

• Dataset Resource
The listed SOTA datasets have some drawbacks such as the images are not classified by
distance, or they do not cover low lighting conditions, therefore, UWS is collecting a dataset from
far distances between 2 meters and 20 meters. This dataset tries to cover different flying altitudes

Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker,
Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas,
Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke,
Yuan Yu, and Xiaoqiang Zheng.
TensorFlow: Large-scale machine learning on heterogeneous systems,
2015. Software available from tensorflow.org.
21 Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., … Chintala, S. (2019). PyTorch:
An Imperative Style, High-Performance Deep Learning Library. In Advances in Neural Information
Processing Systems 32 (pp. 8024–8035). Curran Associates, Inc. Retrieved from
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-
library.pdf
22 Bradski, G. (2000). The OpenCV Library. Dr. Dobb’s Journal of Software Tools.
23 Snapdragon Neural Processing Engine SDK, SNPE (2020). https://developer.qualcomm.
com/docs/snpe/overview.html.

D4.2: Vertical Planes - second version

© ARCADIAN-IoT Consortium 2021-2024 Page 47 of 142

and distances from the faces recorded. Besides, this dataset will convert a wide range of different
scenarios in low-lightning conditions. This is one of the most time-consuming tasks in the process
because it needs to ask for permission to fly drones, the time taken to record each volunteer face
and manual labelling of these faces. In addition, this is continuously evolving process as new data
is being added periodically.

Dataset Size (images) Identities Drone Friendly Notes

UWS Dataset 7167 20 Yes Currently missing
different lighting
conditions.

 Table 7: Dataset specification

• Algorithm
As previously presented, the listed face verification algorithms are not prepared for far distance
performance. These are usually enhanced for close range verification which is considered the
distance from the user to the camera when a ‘‘selfie’’ is being taken. One of the main outcomes
of this work is the creation of an algorithm named as “UWS Model” that achieves the trade-off
performance in terms of speed and accuracy required for face verification from far distances. This
model takes as a baseline ArcFace algorithm which provides an acceptable but non-sufficient
trade-off for the Arcadian-IoT framework.
This outcome is still under development, but it has achieved 62.5 ms and 68.23% mAP of
accuracy at far distances. UWS Model is 3% more accurate at far distances than standard
ArcFace while maintaining the same speed.

Algorithm Speed (ms) Accuracy Far Distance Performance

UWS Model 62.5 ms 68.23% Improved performance.
Table 8: Algorithm accuracy

• Machine Learning execution platform
Over the biometrics pipeline many tasks are executed in sequential and parallel order. In order to

execute this pipeline, the final execution platform deployed is based on the combination of two

different frameworks. From the best of our knowledge, the deployment of OpenCV for video and

image processing in combination with TensorFlow as a machine learning framework provides the

best results in terms of execution speed. The following section defines how both frameworks are

deployed together to achieve better results instead of just deploying one of them for every task.

Framework Execution
Environment

Code Deploymen
t

Compatibility
(OS)

TensorFlow CPU / GPU Open Source Medium High

OpenCV CPU Open Source Easy Medium
Table 9: Deployed Frameworks

2.3.3 Design specification

This subsection presents the technical overview of the biometrics component.

2.3.3.1 Logical architecture view

Figure 14 presents the logical architecture of the biometrics components including some of the
remaining components from Arcadian framework that has an influence in the behaviour of the
biometrics component. Note that for brevity ARCADIAN-IoT is referred to as AIoT in the figure.
Four main interfaces are presented: three with third party provider and one with the multi-factor
authentication component. Further detail of these interfaces is explained in subsections: 2.3.3.2,
2.3.3.3 and 2.3.3.4.

D4.2: Vertical Planes - second version

© ARCADIAN-IoT Consortium 2021-2024 Page 48 of 142

Besides, the Biometrics component performs multiple computationally expensive tasks in parallel.
Five stages are executed by the component to produce the results regarding the authentication
of the user. Figure 10 presents the five stages that the images or frames are processed when
received from the third-party service to provide authentication results.

1) The images received are pre-processed in other to prepare them for an object detection
algorithm. In this stage, two phases are executed in OpenCV framework: scale and colour
scale. The image is rescaled from 1280x720 pixels to 608x608 pixels. Then, the colour
space is changed from RGB to BGR.

2) The face detection algorithm will provide the coordinates on the image where the faces
are located. The algorithm deployed is named as RetinaFace and it is executed with
TensorFlow framework. The results in terms of pixel coordinates are fed into the next step.

3) This pre-processing stage prepares the images from the original image to the face
verification model. First, the face is cropped from the original image. Second, the face is
rescaled to 112x112.

4) The face verification algorithm provides as a result what is usually named as
“embeddings”. This embedding could be defined as the mathematical features extracted
from the face provided as input. The execution of the face verification model is performed
over TensorFlow framework.

5) The final stage obtains the distance between the embedding obtained in the face
verification process of the video from the UAV and the embedding obtained from the
original face of the person that was registered. A similarity index calculation is performed
to determine if the distance of both embeddings is close enough to verify the identity of
the person that requested by the authentication service.

Figure 10 - Logical process view of Biometrics component.

2.3.3.2 Sub-use cases (Recommended)

The Biometrics component conceives four different sub-use cases in order to have a successful
interoperability with other components or third-party service.

2.3.3.2.1 Person Registration

Person registration is the first use case required in order to store the face characteristics of the
person that will request a biometrical authentication. Two values are stored in the biometrics
component database: Arcadian-IoT identifier and the face features of the person. Other
components that intervene in this sub-use case are: Authentication, Identity Provider and a
Third-Party service.

2.3.3.2.2 Person Update

Person update is an optional sub-use case where the person can update their face
characteristics. Third-Party service is the only entity that intervene in this sub-use case.

2.3.3.2.3 Person Delete

Person delete is an optional sub-use case where the person can remove their information from

the biometrics component database. The information deleted are the Arcadian-IoT service and

the features of the face stored. The only entity that intervenes in this case is the Third-Party

service.

D4.2: Vertical Planes - second version

© ARCADIAN-IoT Consortium 2021-2024 Page 49 of 142

2.3.3.2.4 Person Authentication

Person authentication use case may be divided in two scenarios:

Authentication request from a personal device where a photo is taken in that moment from the

frontal camera of the personal device. This image is then verified against the face

characteristics previously stored in the registration sub-use case. The components taking place

in this scenario are Authentication component and Third-Party service.

Authentication request from a drone video. In this scenario, a video feed is streamed from a

drone and the person being recorded is the one to be verified. The frames from the video

received are decoded and processed in order to apply verification against the face

characteristics previously stored in the registration sub-use case.

2.3.3.3 Sequence diagrams (recommended)

The sequence diagrams of the Biometrics component is described in the following figures that

are correlated with the main use cases: registration, authentication from smartphone (image) and

authentication from a drone (video). The communication channels are based on AMQP as

explained in API specification subsection.

Registration is presented in Figure 11, the Third Party Service requests to the IdP the creation
of an ID for a new user. The ID is received by the Third Party Service and sends it along with the
faces of the user to the biometrics component. The features of the faces will be extracted and
stored in the biometrics database using the ID previously created. If the process has finished
successfully, an ok message will be sent back to the Third Party Service.

Figure 11 - Sequence diagram for registration use case.

Authentication from smartphone is presented in Figure 12. The Third Party Service will send
a message requesting a face verification to the MFA. The message contains one image to perform
a single verification to gain access to open the smartphone app and the A-IOT ID. The MFA
manages the authentication process by requesting the identity information of the user to the
biometrics component. The Feature Extraction receives the message and requests the features
to the database of a user using the ID provided. This user has to be registered previously in the
registration process. If the component has received only one image, the features of all the faces
in the image will be extracted and the face verification will verify if any person of the image is the
one previously stored in the database. The result will be sent back to the MFA.

D4.2: Vertical Planes - second version

© ARCADIAN-IoT Consortium 2021-2024 Page 50 of 142

Figure 12 - Sequence diagram for person authentication from a smartphone.

Authentication from a video recorded by a drone is presented in Figure 13. The Third Party
Service will send a message requesting a video verification to the Biometrics Component. The
message contains a URL to a video streaming to perform face verifications and the A-IoT ID of
the person. The MFA forwards this message to the Biometrics component. Then, the video can
be requested from the URL provided. The Feature Extraction receives the message and request
the features to the database of a user using the ID provided. This user has to be registered
previously in the registration process. The video received is decoded and each frame will be verify
in order to perform a biometrics authentication of the user. The result will be sent to the MFA.

Figure 13 - Sequence diagram for person authentication from a video being recorded by drone.

2.3.3.4 Interface description

At this stage of the project there are three different interfaces that communicate different
components and third-party services. These interfaces are directly related to the sub-use cases
previously defined.

2.3.3.4.1 Person registration, update, delete

For person registration, update and delete sub-use cases, the Biometrics component is
communicated with the third-party service (in this case Domain A, led by LOAD). This
communication is performed over AMQP through RabbitMQ software. When a final user wants to
register/update/delete their information into the biometric component (A_IoT ID and images), the
third party service publishes a messaged into the RabbitMQ exchange. The biometrics

D4.2: Vertical Planes - second version

© ARCADIAN-IoT Consortium 2021-2024 Page 51 of 142

component which is already subscribed will receive the information and after executing the task
requested, it publishes another message which the response status. The AMQP API is further
defined in section 2.3.3.5.2.

2.3.3.4.2 Person authentication

As explained, the authentication request is divided into two scenarios. First, for the authentication
from a personal device, this is performed over a REST API. Second, the interface created for the
authentication from a video streamed from a drone is performed also over RabbitMQ.
The description of each interface is defined in subsection “API specification”. The AMQP and
REST API is further defined in section 2.3.3.5.2.

2.3.3.5 Technical solution

2.3.3.5.1 Deployment Architecture View

Figure 14 presents the architecture view of all the components that has influence in the previous

defined use cases: person registration, update and delete and person authentication.

Figure 14 - High-level architectural view of the biometrics component and other components that have
relation with.

2.3.3.5.2 API specification

The API specification for AMQP is described in the following picture:

D4.2: Vertical Planes - second version

© ARCADIAN-IoT Consortium 2021-2024 Page 52 of 142

Figure 15 – AMQP API specification for biometrics messaging

The API specification for REST is described in the following table, the biometrics component
receives a single image to from the multi-factor authentication in order to verify the people’s
faces. This authentication is only from the smartphone’s camera and will only capture one
image.

Request Reply
POST
IP:PORT/authenticate/
Headers: X-AIOT-AUTH-DID: DID
Body: {‘BiometricsImage:’ Image <Base64>}

Error 400 if error in request.
Success 200 with body:
{
“result”: “Code with result of the
authentication
 0: Authentication Complete
 1: No faces detected
 2: More than one face
detected
 3: Other error”
“verified”: “Boolean (True or False)”
}

Figure 16 – REST API specification for Biometrics component

2.3.4 Evaluation and results

The evaluation of our face verification model (UWS model) has been made using the UWS
dataset, that contains faces recorded from an UAV at different distances. At far distances our
UWS model has achieved 68.23% mAP (KPI: 70% mAP) of accuracy at 16 fps (KPI: 16 FPS),
62.5 ms. At close distances the accuracy achieved is 89.05% mAP (KPI: 90% mAP). All these
results have been achieved with a cost-effective platform (drone and camera) of 500€ (KPI: 500€).

2.3.5 Future work

The next steps towards the development and further enhancement of the Biometrics component
are to focus on improving the accuracy and speed of the new model developed for face
verification. Furthermore, low-visibility (evening and night time near street lights) images from a
flying drone will be added to the collected dataset. Finally, integration and validation activities will
be carried out with other components and third-party services.
In terms of integration, UWS is finalising a first prototype for integration with other components
and the third-party software of domain A.

D4.2: Vertical Planes - second version

© ARCADIAN-IoT Consortium 2021-2024 Page 53 of 142

2.4 Authentication (TRU)

2.4.1 Overview

2.4.1.1 Description

ARCADIAN-IoT authentication relies on a multi-factor authentication (MFA) process to identity
and authenticate persons and devices in IoT service providers’ services. The targeted input
factors are other components from the framework, specifically:

a. Decentralized identifiers (section 2.1) / verifiable credentials (section 3.1).
b. eSIM hardware-based/network-based identification (section 2.2).
c. Biometrics identification (section 2.3).

The main objective of ARCADIAN-IoT authentication component is to be the orchestrator of
multiple authentication factors, supporting a robust authentication mechanism for the mentioned
entities (persons and IoT objects) in ARCADIAN-IoT third party services. The MFA outcomes will
also feed the Behaviour Monitoring component and the Self-aware Data Privacy component.

2.4.1.2 Requirements

The main requirements for the authentication component are the following24:

• Authenticate persons: In ARCADIAN-IoT, persons should be able to be identified and
authenticated in IoT service providers’ services using (1) a decentralized identification
approach, (2) a hardware-based identification, and (3) their biometrics characteristics.

• Authenticate devices: Devices should be able to be identified and authenticate in
compliant ARCADIAN-IoT services using (1) a decentralized identification approach and
(2) a hardware-based approach.

In both cases, authentication results shall be used as input for the components of Behaviour
Monitoring and Self-aware Data Privacy.

2.4.1.3 Objectives and KPIs

The MFA component contributes to the accomplishment of the following objectives and KPIs.

KPI scope

In the context of the objectives of enabling security and trust in the management of objects and
persons’ identification, the component aims to support at least 2 robust identity mechanisms for
devices25; and at least 3 multiple simultaneous identification approaches for persons.

In this sense, the main scope of this component relates with developing a novel MFA joining
hardware-based identification, with decentralized identification and biometrics.
Measurable Indicator

1. Number of simultaneous different identification factors for persons
2. Number of different identification factors for devices
3. Number of devices used simultaneously in a person's authentication
Target value (M30) Current value (M20)

24 Requirements enhanced since the last public deliverables according to the research
25 Services identification will be performed only with decentralized identifiers, not in a multi-factor
authentication scheme, because the other ARCADIAN-IoT identification factors (eSIM/hardware based
and biometrics) don’t apply to services

D4.2: Vertical Planes - second version

© ARCADIAN-IoT Consortium 2021-2024 Page 54 of 142

1. At least 3
2. At least 2
3. 2 (requirement from a demonstrator IoT
solution)

1. 3
2. 0
3. 1

2.4.2 Technology research

2.4.2.1 Background

The MFA component is an aggregator and orchestrator of other components research results. Its
overall flow is depicted in Figure 19, for the case of person authentication, and was inspired by
OIDC (described in the background of the hardware-based identification and authentication,
section 2.2). However, considering the project objectives it is expected that the complexity of the
research done within the scope of this component will be towards the orchestration of the
authentication factors that it uses, described in other sections, and not in itself.
NIST defines MFA as “a security enhancement that allows you to present 2 pieces of evidence –
your credentials – when logging in to an account”26. MFA schemes are getting common to face
the issues of traditionally used authentication processes like the use of username and password.
As passwords are hard to remember, people tend to use the same in many different digital
services, which is well-accepted as a poor practice. To overcome this security issue, MFA
schemes are being adopted, especially in online services that deal with sensitive information like
e-banking, or professional shared digital services. In MFA schemes, the most common kinds of
factors are27:

• Something the person knows, like a password or a PIN.

• Something that the person has, like a smartphone or a secure USB key.

• Something that the person is, like a fingerprint or a facial recognition.
To these factors, time and location can be added to strengthen the credentials verification
process28.
The above-mentioned factors relate directly with the ones existent in ARCADIAN-IoT. Even the
time and location are considered relevant for the scenario of a person authentication using 2
devices for identification.
Usually, for persons, a MFA scheme relies on requesting the person to provide information that
allows to validate the several factors, step by step (being this process also known as step-up
authentication29). To avoid the burden that may relate with a lower system usability, many
systems27 just requests a second factor for specific functionalities, e.g. to change a password.
In what concerns MFA for IoT devices, this is still quite uncommon. Its application for admin
access to IoT devices is considered very relevant30 (which is, again, person authentication). The
same source references the relevance of MFA for ensuring the trust of the devices in a network,
referring to the ease of adding malicious devices to a connected system as a motivation for using
MFA for devices.
While still uncommon in the industry, applying two-factor authentication (a form of MFA) to IoT
devices is target of recent research31. The performance of the IoT network, and the suitability for
lightweight IoT devices is referred to as challenge of applying MFA schemes and, therefore, in
that work are presented studies to decrease hardware use in authentication schemes. This follows

26 https://www.nist.gov/blogs/cybersecurity-insights/back-basics-whats-multi-factor-authentication-and-
why-should-i-care
27 https://support.microsoft.com/en-us/topic/what-is-multifactor-authentication-e5e39437-121c-be60-d123-
eda06bddf661
28 https://www.techtarget.com/searchsecurity/definition/multifactor-authentication-MFA
29 https://auth0.com/blog/what-is-step-up-authentication-when-to-use-it/
30 https://blog.nordicsemi.com/getconnected/multi-factor-authentication-for-iot
31 https://link.springer.com/article/10.1007/s11227-021-04022-w

D4.2: Vertical Planes - second version

© ARCADIAN-IoT Consortium 2021-2024 Page 55 of 142

a similar research line of the previously presented in ARCADIAN-IoT’s network-based
authentication (section 2.2).
The result of a successful MFA process should allow an entity to start using the functionalities
and data of a given service. For this, in terms of the information that results of a MFA process,
OpenID Connect defines ID tokens, which contain information on what happened on the
authentication process32. The same source defines access tokens as what OAuth client uses to
make requests to an API.

2.4.2.2 Research findings and achievements

The main current research findings and achievements are the following:

• A vision and architecture for the MFA process for persons and devices well-accepted
between the main partners involved (TRU, UWS, ATOS and MAR)

• Definition of the first target prototype – person authentication with SSI, biometrics, and
network-based credentials.

• Technical specification of all the related interfaces (see Figure 19 for interfaces
understanding)

• Implementation of the first prototype, with integration testing of 2 authentication factors
done and a third one ongoing (no integration in IoT solutions yet)

• Definition of integration steps with two IoT service providers (in the scope of WP5 as well)

2.4.2.3 Produced resources

The main produced resources are the architecture, the interface specification between the MFA
and biometrics, SSI and network-based identification, and the first prototype of the MFA for person
authentication.

2.4.3 Design specification

2.4.3.1 Logical architecture view

Figure 17 depicts a logical architecture of ARCADIAN-IoT Authentication component. Assuming
the role of orchestrator, it articulates the information of the 3 identification/authentication factors
of the framework. Based on these components results it issues an ID token for the requesting
entity authenticated operation.

32 https://oauth.net/id-tokens-vs-access-tokens/

D4.2: Vertical Planes - second version

© ARCADIAN-IoT Consortium 2021-2024 Page 56 of 142

Figure 17 - ARCADIAN-IoT authentication high-level architecture

As outputs from the Authentication that feed other ARCADIAN-IoT components, there is a relation
with the Behaviour Monitoring for this component to understand authentication events that may
allow to infer a threat. For the Self-aware Data Privacy, after a successful authentication the
Authentication issues an ID token to be used for access management control according to the
user-defined privacy rules, and for role base access control (defined by the IoT service providers).

2.4.3.2 Sub-use cases

As sub-use cases of the Authentication component, there is the person authentication; the device
authentication; and the person authentication with sources of authentication factors from 2
different devices.

2.4.3.2.1 Person authentication

According to the defined KPIs, person authentication should consider 3 factors. The ones being
considered are verifiable credentials, a hardware-based identification (eSIM/eUICC-based); and
biometrics. This sub-use case is the one targeted for the first prototype as described below.

2.4.3.2.2 Device authentication

The component KPIs inform that devices should have at least robust identity mechanisms for
devices. The MFA component will use for this purpose decentralized identifiers and a hardware-
based identification (eSIM/eUICC-based).

2.4.3.2.3 Person authentication with 2 different sources of information

This sub-use case considers the need of articulation of 2 different devices for person identification.
An example of such a scenario is the one of Domain A, where a drone needs to identify a person
that requested its services, and the identification and authentication process benefits from
considering, at the same time, information from the personal device. As can be inferred, time and
location will also be factors for MFA in this process.

D4.2: Vertical Planes - second version

© ARCADIAN-IoT Consortium 2021-2024 Page 57 of 142

2.4.3.3 Interface description

In terms of interfaces, the MFA interacts mainly with the IoT service provider (SP), authentication
factors, Self-aware Data Privacy and Behaviour Monitoring. Details about these interfaces can be
found in Table 6.

Table 6 - MFA interfaces

Sender Receiver
Communication
type

Content
exchanged

Status

SP MFA RESTful API

Authentication
request with
related
authentication
claims

Done for
P1

MFA

- SSI Authenticator
- Biometrics
Authenticator
- Network
Authenticator

- RESTful API for
SSI and Network
Authenticator;
- RabbitMQ AMQP
0.9.1 for biometrics

Authentication
claims for
verification of a
given requester

Done for
P1 (testing
with SSI
missing)

- SSI
Authenticator
- Biometrics
Authenticator
- Network
Authenticator

MFA

- RESTful API for
SSI and Network
Authenticator;
- RabbitMQ AMQP
0.9.1 for biometrics

Information
about claims
provided validity

Done for
P1 (testing
with SSI
missing)

MFA SP RESTful API

ID token (in
case of
authentication
success)

Done for
P1

Self-Aware Data
Privacy

MFA TBD
Request of ID
token validity
confirmation

For P2

MFA
Self-Aware Data
Privacy

TBD
ID token validity
confirmation

For P2

MFA
Behaviour
Monitoring

TBD

Authentication
results for a
given
ARCADIAN-IoT
ID

For P2

The technical specification and sequence diagram for these interfaces was agreed among the
involved partners and is shared in the common project folder (not made public to not hamper
exploitation strategies definition of the involved components).

2.4.3.4 Technical solution

ARCADIAN-IoT authentication relies on multiple technologies, from multiple partners, to
accomplish its objective. This fact influenced the research strategy to achieve the technical
solution, which, firstly, had the objective of settling a well-accepted vision for the component. This
vision is depicted in Figure 18, which defines the well-accepted authentication flow for persons.
The accepted research hypothesis for the devices’ authentication flow is that it should be similar
to the persons’ authentication flow, but without the biometrics identification factor. Regarding the
person authentication with simultaneous identification from 2 devices, this directly relates with the
IoT solution of personal vigilance using drones (Domain A). In this case, partners agreed that the

D4.2: Vertical Planes - second version

© ARCADIAN-IoT Consortium 2021-2024 Page 58 of 142

main difference should be that the biometrics component, instead of using as source the
biometrics data captured by the personal device, should use biometrics data captured by the
drone, and should add as factors the location of each of the devices (being close enough shows
that it is possible that the drone is identifying the person) and time. These research hypotheses
were defined purposely to build an agnostic approach to ARCADIAN-IoT MFA, where the flow is
similar in all the existent cases, varying just the number of authentication factors or sources of
identification claims.
The second measure to achieve the current technical solution, after the well-accepted vision
definition, was the agreement, between the involved partners on what should be the first target
prototype, to be evolved iteratively after in and agile approach. The decision was to focus on
prototyping the person authentication first. The rationale was that the person authentication
involves all the identification factors, which allows all partners to start their research, and that the
other use cases can build upon this one.

Figure 18 - Architecture from ARCADIAN-IoT MFA for persons

Thirdly, for the moment, and considering the authentication factors used, the multi-factor
approach will consider that all the factors will be used simultaneously. This means that no step-
up authentication is planned (see background for the definition of step-up authentication). For
device authentication, step-up authentication could be relevant for the IoT network performance
enhancement, and this can be considered in a forthcoming stage of the project. For persons, the
rationale behind verifying all factors simultaneously, is that the ones used don’t request much
interaction from the person. The hardware-based / network-based factor is zero-touch
mechanism, which means that no interaction is needed (just autonomous operations from the
personal device). The biometrics is based on an approach that is normal in apps nowadays (e.g.
to use facial recognition to unlock an app). Considering this a common practice with very low user
interaction, for now, we are assuming that it doesn’t harm the user experience. Therefore, there
is only one factor that requests user interaction, which is the one related with the self-sovereign
identity (SSI). For this reason, for the moment, all the factors will be assessed in parallel, being
the MFA component the element that requests claims verification, aggregates the results, and
issues an ID token based on them, for the entity authenticated operation. This token don’t define

D4.2: Vertical Planes - second version

© ARCADIAN-IoT Consortium 2021-2024 Page 59 of 142

any access/authorization rule. For the moment, it just informs if the authentication of a given
ARCADIAN-IoT ID was successful or not. In the future, if relevant, it can add more information.
This strategy will be evaluated with IoT service providers within WP5 context, being aware of
state-of-the-art challenges related with IoT network performance and user experience.

Figure 19 - Authenticated person operation flow

Lastly, the current research focused on the definition of the integration of the authentication
mechanism with an authorization mechanism for the normal flow of an authenticated entity. The
current research hypothesis is that after the authentication, when a person or device requests
access to data or services from the service provider, it will need to present the token issued by
the MFA to ARCADIAN-IoT’s Self-aware Data Privacy component. This component, after
confirming the token validity with the MFA, will manage the authorization rules based on privacy-
related definitions or business rules specified by the IoT service providers. Figure 19 depicts the
described process.
The results of the authentication of the entities (ID token) issued by the MFA component will also
be used on the interaction of other components with ARCADIAN-IoT framework. An example can
be the self-recovery mechanisms, directly associated with persons or devices, that need to know
the requesting entity authentication results to perform its functionalities. This process will be
further defined in the next research period.

2.4.4 Evaluation and results

The current MFA solution has been tested in a lab setup, particularly the integration with the
biometrics and Network-based Authorization components. For the testing purpose, an emulator
of service provider services was developed. While ongoing, the integration with the SSI has not
been tested yet.
Testing and evaluation efforts with two domain owners (real IoT service providers) is ongoing in
the scope of WP5.

D4.2: Vertical Planes - second version

© ARCADIAN-IoT Consortium 2021-2024 Page 60 of 142

2.4.5 Future work

The future work plan in what concerns the update of already prototyped components will be based
on the evaluation made with IoT service providers in WP5.
Apart from those enhancements based on the evaluation to be done, in the next reporting period
we expect to deliver:

• Integration with Self-aware Data Privacy component

• Integration with the Behaviour Monitoring component

• Device MFA.

• Person MFA using 2 devices as sources of data.

• Testing and evaluation of the final solution.

D4.2: Vertical Planes - second version

© ARCADIAN-IoT Consortium 2021-2024 Page 61 of 142

3 TRUST PLANE

3.1 Verifiable Credentials (ATOS)

3.1.1 Overview

3.1.1.1 Description

ARCADIAN-IoT will provide an identity management solution that is built on W3C Verifiable
Credentials specification [7] that is a core standard for the Self-Sovereign Identity (SSI) approach.
The solution enables trusted identification of users and things through the issuing of identity
claims as Verifiable Credentials (VCs) to their respective secure crypto based digital identity
wallets and agents without depending on centralised Identity Providers with its inherent privacy
risks. Once a user or thing has been issued with Verifiable Credentials, they can later present
them to other entities such as services and apps which require to authenticate the user or thing
in a trusted crypto based manner, that only the holder of the requested Verifiable Credential can
do.
Decentralised Identifiers described in section 2.1 provide an identity that is resolvable over a
decentralised and distributed infrastructure to cryptographic keys associated to the identity. This
helps provide for the digital signature validation of issued Verifiable Credentials by the issuer and
the presentation of Verifiable Credentials to 3rd parties, which combine to underpin the root trust
in Self-Sovereign Identity.
Verifiable Credentials are supported by an SSI identity framework that is discussed in section
3.1.2 to provide the core building blocks for issuing, presenting and verifying credentials as per
the W3C Verifiable Credentials specification.

3.1.1.2 Requirements

A recall of the requirement 5.1.1 first defined in D2.4 [1] is given below and it is also supplemented
with additional related sub- requirement.

• Requirement 5.1.1 – Verifiable Credential management
o To provide Verifiable Credential based identity management to enable secure and

authenticated identity and other claims needed by the services and apps in the IoT
ecosystems

3.1.1.3 Objectives and KPIs

The overarching objective is to employ the Verifiable Credentials protocol for integration in the
Permissioned Blockchain and implement / support the integration of the different agents (issuer,
holder and verifier, as defined by the W3C VC specification) for the developed components and
use cases.
Additional aims are as follows:

• Verifiable Credentials will allow any system or user to cryptographically verify in real time
claims related to the IoT device.

• Further enhance trust through VCs by enhancing implementations towards standard’s
interoperability.

• Use Verifiable Credentials in combination with Decentralized Identifiers (DIDs), with trust
rooted on Distributed Ledger Technology (DLT), to ensure the authenticity, integrity,
immutability, and uniqueness of each object without relying on a Central Authority.

• A desirable objective is to support eIDAS Bridge [20] within the ESSIF project where a
service can issue Verifiable Credentials to a user.

KPIs defined for Verifiable Credentials are listed below:

KPI scope

D4.2: Vertical Planes - second version

© ARCADIAN-IoT Consortium 2021-2024 Page 62 of 142

Support at least one domain use case with Verifiable Credentials
Measurable Indicator

Number of domains using Verifiable Credentials

Benchmarking (OPTIONAL)

Not Applicable

Target value (M30) Current value (M20)

1 0

KPI scope

Interoperability with at least one eIDAS identity schema.

Measurable Indicator

Issue person Verifiable credential with an eIDAS compatible schema.

Benchmarking (OPTIONAL)

Not Applicable

Target value (M30) Current value (M20)

1 0

KPI scope

Enable, at least 3 multiple simultaneous identification approaches for persons.

Measurable Indicator

Support Verifiable Credential identification from a person´s mobile wallet.
Benchmarking (OPTIONAL)

Not Applicable
Target value (M30) Current value (M20)

1 0

KPI scope

Support, at least two robust identity mechanisms for devices and apps/services.

Measurable Indicator

Devices and apps/services support Verifiable Credentials at least in one domain.
Benchmarking (OPTIONAL)

Not Applicable
Target value (M30) Current value (M20)

2 0

3.1.2 Technology research

In this section it is described the background that ATOS brings to ARCADIAN-IoT in Self-
Sovereign Identity and proceeds to examine the State-Of-The Art considering the scope of
standardisation in this new technology area and the need for interoperability before doing a final
technical analysis on the competing technology to appraise the selected technology for
ARCADIAN-IoT.

3.1.2.1 Background

ATOS is in the process of building a Self-Sovereign Identity solution called Ledger uSelf with the
aim to simplify the adoption and integration of Self-Sovereign Identity by Service Providers. The
existing prototype asset provides a mobile wallet and also a broker that acts as a wrapper on top
of an open source Hyperledger Aries GO Agent [42], which in turn makes integration easier for

D4.2: Vertical Planes - second version

© ARCADIAN-IoT Consortium 2021-2024 Page 63 of 142

Service Providers. Today, the Ledger uSelf solution has basic support for issuing, presenting and
verification of Verifiable Credentials for persons. The figure below shows the overall Aries SSI
Agent design with all features implemented as per the Aries Protocol Request for Comments
(RFCs)33 and shows the external interfaces supported by the Hyperledger Aries SSI Agent
towards other Aries SSI Agents (including deployed in SSI Wallets and Mediators) as well as the
Ledger uSelf Broker and its interface to the Relying Party.

Figure 20 - Ledger uSelf built on top of Hyperledger Aries GO Agent

The current Ledger uSelf Broker prototype is implemented in Kotlin and is a completely separate
component from the Aries GO Agent.

The following sub-sections investigate the current state-of-the-art in this area and also the work
being done on interoperability to make sure that implementations can fully interwork with each
other.

3.1.2.1.1 State of the Art

There are several Self-Sovereign Identity solutions on the market today based on the evolving
standards of Decentralized Identities and Verifiable Credentials. Here we examine some of the
solutions available today:

- Veramo [23] is an evolution of the uPort open source SSI software that was one of the
first pioneers of SSI from 2015. uPort’s technical architecture and open source libraries
started to manifest limitations due to changes in maturing standards that meant many

33 https://github.com/hyperledger/aries-rfcs

https://github.com/hyperledger/aries-rfcs

D4.2: Vertical Planes - second version

© ARCADIAN-IoT Consortium 2021-2024 Page 64 of 142

changes throughout the code base and also its tight integration with on-chain identities.
An evolution to a new open source framework has resulted in a new modular architecture
based around a library of core functionality, which allows the developer community to
easily interface with and extend its functionality as needed, for example with additional
DID methods, key management, protocols.

- Veres One [24] is a non-profit identity project with the goal of addressing a range of
existing identity challenges. Veres One supports a public permissionless network and the
cost to create a Decentralized Identifier is approximately one US Dollar.

- Hyperledger Indy [25] originally developed by Evernym [141], is a public permissioned
DLT solution purpose-built for decentralized identity and initially integrated with the Sovrin
Blockchain Network.

- Hyperledger Aries [26] is an open source evolution from Hyperledger Indy that creates
a modular and extensible SSI Framework that is completely independent of any Verifiable
Data Registry, be it based on DLT or otherwise. Aries has notably led standards-based
interfaces through its work in W3C and the Decentralised Identity Foundation (DIF).

- Jolocom [27] is another open source SSI platform that uses Ethereum by default. It uses
hierarchical deterministic keys to create multiple identities from a seed master identity and
resultant DIDs resolve to a DID Document stored on IPFS.

- MATTR [28] have developed an open and standards-based decentralized identity
platform. They have a strong identity product and also open-source software including a
mobile wallet built on Hyperledger Aries. They provide SSI solutions as well as providing
configurable building blocks to suit a broad array of use cases and user experiences.

- SpruceID [29] builds open-source credentialing infrastructure that is standards-compliant,
production-ready, and extensible into typical enterprise and government IT systems.
SpruceID SSI provides open-source and standards-based core Verifiable Credential and
Decentralized Identifier functionality in Rust.

- IOTA Identity [30] is an open-source and standards-based Rust implementation of
decentralized digital identity. It implements standards such as the W3C Decentralized
Identifiers (DID) and Verifiable Credentials and the DIF DIDCOMM Messaging. This
framework can be used to create and authenticate digital identities, creating a trusted
connection and sharing verifiable information, establishing trust in the digital world. It is
integrated and tested with the IOTA Tangle DID method as described in section 2.1
although the components themselves are ledger agnostic. Current version is 0.5.0 and
the notice reads: “This library is currently in its beta stage and under development and
might undergo large changes! As such, it is to be seen as experimental and not ready for
real-world applications”.

- AlastriaID [31] is deployed as one of the basic applications of the promoted blockchain
infrastructure by the Alastria consortium within its platform. This technological digital
identity in blockchain aims to provide and establish an infrastructure and development
framework, to carry out Sovereign Digital Identity projects, with full legal force in the euro
zone. The implementation design follows W3C standards with some important differences
in their blockchain based DID and VC specifications and the VC token design and use of
hashes.

3.1.2.1.2 Interoperability

Overview
Due to initial SSI developments preceding much of the standards work and differing rival
technologies, their implementations were never going to be able to interwork with each other.
However, today there is a lot of effort going into interoperability as the standards have matured.
There are, however, still many challenges aside from doing interoperability tests to make different
interpretations of the standards interwork with each other. As we can see in the following table
from the Decentralized Identity Foundation Interoperability WG [32] there are rival protocols
supporting different SSI stack approaches for the VC data model, exchange, proof presentations
and transport.

D4.2: Vertical Planes - second version

© ARCADIAN-IoT Consortium 2021-2024 Page 65 of 142

Figure 21 - Protocol support for SSI [32]

Additionally, not all implementations support the same cryptographic identity, signatures and
proofs, as we see below.

Figure 22 - Crytpgraphic technology [32]

Hyperledger Aries, MATTR, Spruce and Veramo are amongst the most active participants in this
Interoperability WG. Interoperability testing is also supported by W3C with issuing and verification
of VCs for testing available here34.

DID Exchange and VC Presentation
For SSI agents to be able to provide applications with a secure, private communication
methodology they are built on top of decentralized design making use of DIDs (see section 2.1).
This enables agents to reliably exchange DIDs and verify each other as the holder of that DID
and reliably share Verifiable Credentials, all with cryptographic proofs based on the DIDs.
Currently there are two rival protocols to perform this:

1. DIDCOMM is a dedicated Self-Sovereign Identity standard-based protocol that arose from
Aries (now standardised in DIF) and is needed to be supported by devices and services
alike so that they can successfully interwork with each other.

2. Self-Issued OpenID Provider v2 (SIOP) [35] and OIDC-4-Verifiable-Presentations
(OIDC4VP) [34] build upon the well establish OIDC protocol, but now with the OpenID
Provider under the End-User's local control. End-Users can leverage Self-Issued OPs to
authenticate themselves and present claims directly to Relying Parties (RPs).

With two rival protocols there is dilemma in which one to support. DIDCOMM comes from Aries,
builds on standard based JWM [36] and is now standardised in DIF, whereas SIOP / OIDC4VP
have been developed more recently and build on OIDC so that it makes use of technology that is
already well supported and understood by many online services and identity providers. So, taking
the OIDC approach would help with one of the major challenges of using new technology, that
being adoption.

34 https://github.com/w3c-ccg/vc-api

https://github.com/w3c-ccg/vc-api

D4.2: Vertical Planes - second version

© ARCADIAN-IoT Consortium 2021-2024 Page 66 of 142

However, for now, it seems that any SSI solution would need to be able to support both DIDCOMM
and Self-Issued OpenID Provider protocols to be interoperable with the varying SSI solutions.

EBSI ESSIF Interoperability Profile
EBSI ESSIF have created an Interoperability profile [33] to make sure that the infrastructure they
are creating for issuing Verifiable Credentials in the ecosystem will be able to work with many
different implementations which is very much needed if SSI is to be adopted ubiquitously. It is
also observed that EBSI are currently only promoting SIOP / OIDC4VP interwork. However, other
important frameworks promoted by the European Commission such as IOTA and GAIA-X also
use DIDCOMM.

Technical analysis
SpruceID and IOTA both build in RUST, for its suitability across many different platforms including
embedded systems due to its memory safety, amongst other features. This makes them more
suitable for applications in constrained IoT Devices.
Currently, however IOTA Identity seems to be somewhat early to adopt as it is still in Beta and to
date also only integrated with IOTA Tangle DID - which we already seen was not in line with the
GDPR “right to be forgotten” principle and is not known to be active in interoperability efforts.
SpruceID on the other hand is seen to support a comprehensive open-source solution and is
active in interoperability efforts as can be seen here [37] and also with their participation in the
Decentralized Identity Foundation Interoperability WG.
Hyperledger Aries is a fully open-source framework that has a strong development team with
continued releases and pushing the standards to promote the interoperability of SSI. It is a state-
of-the-art dedicated framework supporting SSI Agents (available in Python, .NET, GO) that
implement the core features and offer APIs to be integrated with 3rd party applications. It
commenced in 2019 and is now quite mature with good documentation, supports interoperability
and testing, and has its latest release coming out in April, so to keep in check with the latest
updates in the standards as shown here35. It is amongst these characteristics that ATOS
Research and Innovation chose Hyperledger Aries GO to build its Self-Sovereign Identity solution
called Ledger uSelf.
In summary, SpruceID and Hyperledger Aries GO are primary candidate open-source
technologies for consideration in developing SSI for persons and things according to the analysis
carried out here. That said, SpruceID is a small start-up enterprise whereas Hyperledger Aries
GO is part of the Hyperledger Foundation global collaboration, hosted by The Linux Foundation
and has a larger coding community and also more active as can be seen by its GitHub Repo
insights [43]. Moreover, hyperledger Aries is seen to benefit from a wider collaboration and has
extensive and continued development of its standard SSI framework.
Considering the above and that ATOS´s own prototype implementation, discussed in section
3.1.2.1, currently provides for basic Verifiable Credential issuing, presentation and validation, it is
decided to further develop the ATOS Ledger uSelf asset (based on Hyperledger Aries GO) to
meet the needs of ARCADIAN-IoT with the primary objectives to add support for IoT Devices and
privacy preserving ZKP in presenting Verifiable Credentials (see section 2.1.2.1.4).

3.1.2.2 Research findings and achievements

Current state-of-the-art analysis in Self-Sovereign Identity and support of Verifiable Credentials
was carried out and the analysis concluded that Hyperledger Aries was the best choice to
support Verifiable Credentials in the ARCADIAN-IoT framework.

35 https://github.com/hyperledger/aries-framework-go/releases

D4.2: Vertical Planes - second version

© ARCADIAN-IoT Consortium 2021-2024 Page 67 of 142

3.1.2.3 Produced resources

In addition to enhancing the ledger uSelf SSI solution as described in the following section a new
SSI IdP component is implemented for registering ARCADIAN-IoT entities (persons, IoT-Devices,
services) to the ARCADIAN-IoT Framework and handling frontend and backend interactions with
the Ledger uSelf Broker for issuing and verifying Verifiable Credentials.

3.1.3 Design specification

3.1.3.1 Sub-use cases

3.1.3.1.1 Issue a Verifiable Credential to a Person´s SSI Wallet

A person is able to be issued with a Verifiable Credential to their SSI Wallet which is later able to
be used for onboarding in ARCADIAN-IoT framework and Service Provider services.

3.1.3.1.2 Issue a Verifiable Credential to an IoT Device´s SSI Agent

An IoT Device is able to be issued with a Verifiable Credential to their SSI Agent which is later
able to be used for onboarding in ARCADIAN-IoT framework and Service Provider services.

3.1.3.1.3 Present a Verifiable Credential from a Person´s SSI Wallet

A person is able to present a Verifiable Credential from their SSI Wallet so to prove their identity
credential.

3.1.3.1.4 Present a Verifiable Credential from an IoT Device´s SSI Agent

An IoT Device is able to present a Verifiable Credential from its SSI Agent so to prove its identity
credential.

3.1.3.1.5 Verify a Verifiable Credential received from a Person´s SSI
Wallet

The ARCADIAN-IoT framework implements an SSI Agent so to verify a person´s Verifiable
Credential.

3.1.3.1.6 Verify a Verifiable Credential received from an IoT Device´s SSI
Agent

The ARCADIAN-IoT framework implements an SSI Agent so to verify an IoT Devices Verifiable
Credential.

3.1.3.1.7 Verify a constrained IoT Device´s SSI Agent with its PUBLIC
DID

Where a constrained IoT Device is not able to support the full SSI stack due to resource limitations
it should at least be verified by proving that it is in possession of the DIDs private key.

3.1.3.1.8 Service Provider service registers a Person in the ARCADIAN-
IoT framework

Persons are onboarded by a Service Provider service to the ARCADIAN-IoT framework.
The use case figure below shows the onboarding process for an end user in a service provided
by the ARCADIAN-IoT register person. This also shows the related pre-requisite sub-use case of
“Issue a Verifiable Credential to a Person´s SSI Wallet”.

D4.2: Vertical Planes - second version

© ARCADIAN-IoT Consortium 2021-2024 Page 68 of 142

Figure 23 - Register Person in ARCADIAN-IoT Framework by a SP service

Note that it is only authorised for Service Provider services registered in the ARCADIAN-IoT
framework to be able to perform person onboarding / registration (see section 2.1.3.1.6).

3.1.3.1.9 Service Provider service registers an IoT-Device in the
ARCADIAN-IoT framework

IoT-devices are onboarded by a Service Provider service to the ARCADIAN-IoT framework.

3.1.3.1.10 Service Provider service updates a registered Person or IoT-
Device identity in the ARCADIAN-IoT framework

Previously onboarded Persons and IoT devices are updated by a Service Provider service in the
ARCADIAN-IoT framework.
It is only authorised for Service Provider services registered in the ARCADIAN-IoT framework to
be able to perform onboarding (see section 2.1.3.1.6).

3.1.3.1.11 Service Provider service deletes a registered person or IoT-
Device in the ARCADIAN-IoT framework

A Service Provider service can delete a person or IoT Device that they have previously registered
in the ARCADIAN-IoT framework.

D4.2: Vertical Planes - second version

© ARCADIAN-IoT Consortium 2021-2024 Page 69 of 142

3.1.3.2 Logical architecture view

The following figure shows the logical architecture of the Ledger uSelf Self-Sovereign Identity
solution with the broker supporting easy integration of Hyperledger Aries Agent and with
capabilities to extend the functional capabilities.

Figure 24 - Ledger uSelf Broker Self-Sovereign Identity Solution + SSI IdP

The above figure shows the Broker as a distinct component from the Hyperledger Aries GO Agent
for the P1 deployments. Note that for P2 it will be one integrated SSI Agent / Broker in GO so to
be able to operate more efficiently on more restricted IoT Devices such as the Jetson Nano in
Domain A.
The Ledger uSelf Self-Sovereign Identity solution consists of the following components:
Broker: This component is developed in Kotlin and acts as a wrapper over the Hyperledger Aries
Agent to simplify and make easier for organisations to integrate a Self-Sovereign Identity solution
as another authentication means. Typically, it integrates between Relying Parties and the
Hyperledger Aries GO Agent.
Hyperledger Aries GO Agent: This is the open-source Hyperledger Aries Agent developed in
GO [42] which supports the base SSI functions for Issuing, Presenting and Verifying Verifiable
Credentials as in line with the W3C Verifiable Credential specification [7]. The Aries GO Agent
interacts with other agents or SSI Wallets via the mediator over the DIDCOMM protocol [22].
SSI Wallet: The mobile wallet application implements an SDK that integrates to the Aries GO
Agent converted to run on android and provides a user interface for being issued with and
presenting Verifiable Credentials.
Hyperledger Aries GO Mediator: This is a specific instance of the Hyperledger Aries Agent
implemented to handle full-duplex communications with mobile devices using websockets. This
provides a standardized way for the GO Mediator to send content to the SSI Wallet without being
first requested by the SSI Wallet and therefore enables messages to be passed back and forth
while keeping the connection open.
In addition to the above Ledger uSelf solution components it can be seen in the above figure that
ATOS provides also another component:

D4.2: Vertical Planes - second version

© ARCADIAN-IoT Consortium 2021-2024 Page 70 of 142

SSI IdP: This component provides several functionalities regarding the identity provision of
persons and devices in ARCADIAN-IoT. Firstly, it provides a Verifiable Credential issuer role so
to support the issuing of persons and devices with Verifiable Credentials as a pre-requisite for all
of the ARCADIAN-IoT use cases. It also supports a front-end for the requesting of Verifiable
Credentials and for authentication use cases where a user is requested to present a Verifiable
Credential. Finally, it supports the onboarding of persons and devices to Relying Parties and also
in the framework, with an ARCADIAN-IoT Identity (aiotID) generated and published to all
ARCADIAN-IoT component services that subscribe to the aiotID registration event.

D4.2: Vertical Planes - second version

© ARCADIAN-IoT Consortium 2021-2024 Page 71 of 142

3.1.3.3 Sequence diagrams

3.1.3.3.1 Issue a Verifiable Credential to a Person´s SSI Wallet (P1)

Figure 25 - Issue a Person VC

D4.2: Vertical Planes - second version

© ARCADIAN-IoT Consortium 2021-2024 Page 72 of 142

3.1.3.3.2 Issue a Verifiable Credential to an IoT Device´s SSI Agent (P2)

To be confirmed for final prototype.

3.1.3.3.3 Present a Verifiable Credential from a Person´s SSI Wallet (P1)

Figure 26 - Verify a Person VC and provide identity claims

Note that if the aiotID was not presented by the service, the SSI IdP would query the user for the
identity associated with their identity Verifiable Credential. For a Person VC this will be the user´s
email address. In the case that national eID were supported this would be their national identity.

3.1.3.3.4 Present a Verifiable Credential from an IoT Device´s SSI Agent
(P2)

To be confirmed for final prototype.

3.1.3.3.5 Verify a Verifiable Credential received from a Person´s SSI
Wallet (P1)

See section 3.1.3.1.3.

D4.2: Vertical Planes - second version

© ARCADIAN-IoT Consortium 2021-2024 Page 73 of 142

3.1.3.3.6 Verify a Verifiable Credential received from an IoT Device´s SSI
Agent (P2)

See section 3.1.3.3.4.

3.1.3.3.7 Verify a constrained IoT Device´s SSI Agent with its PUBLIC
DID (P2)

To be confirmed for final prototype.

3.1.3.3.8 Service Provider service registers a Person in the ARCADIAN-
IoT framework (P1)

Figure 27 - Service Provider service registers a Person

3.1.3.3.9 Service Provider service registers IoT-Device in the
ARCADIAN-IoT framework (P2)

To be confirmed for final prototype.

3.1.3.3.10 Service Provider service updates a registered Person identity
in the ARCADIAN-IoT framework

This is similar to the initial register flow from the viewpoint of the Service Provider but uses a PUT
instead of a POST.

3.1.3.3.11 Service Provider service updates a registered IoT-Device
identity in the ARCADIAN-IoT framework

To be confirmed for final prototype.

D4.2: Vertical Planes - second version

© ARCADIAN-IoT Consortium 2021-2024 Page 74 of 142

3.1.3.3.12 Service Provider service deletes registered person from the
ARCADIAN-IoT framework (P1)

Figure 28 - Service Provider deletes a registered Person that it previously registered

3.1.3.3.13 Service Provider service deletes a registered IoT-Device from
the ARCADIAN-IoT framework (P2)

To be confirmed for final prototype.

3.1.3.4 Interface description

The external interfaces to ARCADIAN-IoT components and Service Provider systems are
exposed from the SSI IdP. The SSI IdP interface description is shown in the following figure.

D4.2: Vertical Planes - second version

© ARCADIAN-IoT Consortium 2021-2024 Page 75 of 142

Figure 29 - SSI IdP Interface description

D4.2: Vertical Planes - second version

© ARCADIAN-IoT Consortium 2021-2024 Page 76 of 142

3.1.3.5 Technical solution

3.1.3.5.1 Deployment architecture view (optional)

Figure 30 - Self-Sovereign Identity deployment in the ARCADIAN-IoT Framework

3.1.3.5.2 Domain model

The domain model shown below is for handling the following registered ARCADIAN-IoT entities:

• Persons,

• IoT-Devices (device)

• Constrained IoT-Devices (cDevice)

• Service Provider Organisations

• Service Provider Service

D4.2: Vertical Planes - second version

© ARCADIAN-IoT Consortium 2021-2024 Page 77 of 142

Figure 31 - SSI IdP Registered Entities

3.1.3.5.3 API specification

The Open API specification for the SSI IdP is uploaded to ARCADIAN-IoT GitLab project here:
https://gitlab.com/arcadian_iot/verifiable-credentials/-
/blob/main/ssiIdP/interface/ssiIDPopenapi.yml

3.1.3.5.4 Frontend design

SSI IdP Issuer

The frontend supports the issuing of Person’s Verifiable Credentials (see section 3.1.3.1.1) to end
users of the service as a pre-requisite to register with any service with ARCADIAN-IoT. In a real-
world scenario, the user is expected to already have a national eID issued to their wallet as per
the use cases envisaged for the new European Identity Wallet [44].
The frontend supports sending the invitation to the user´s email so to establish a connection from
the user´s mobile SSI Wallet to the framework´s SSI Agent and be issued with a Person Verifiable
Credential. The screenshot below shows the issuer screen obtaining the user´s details.

https://gitlab.com/arcadian_iot/verifiable-credentials/-/blob/main/ssiIdP/interface/ssiIDPopenapi.yml
https://gitlab.com/arcadian_iot/verifiable-credentials/-/blob/main/ssiIdP/interface/ssiIDPopenapi.yml

D4.2: Vertical Planes - second version

© ARCADIAN-IoT Consortium 2021-2024 Page 78 of 142

Figure 32 - SSI IdP Issuer Screen

The next screen is an example of the presentation of the QR Code that is scanned by the
Ledger uSelf mobile SSI Wallet to make a connection with the framework´s SSI Agent.

Figure 33 - QR code display to connect to the SSI Agent

SSI IdP Authentication

As regards person authentication, the SSI IdP Frontend receives redirects from the Multi-Factor
Authentication (MFA) component (see section 2.4) to request a user to present their Verifiable
Credential so to provide the MFA with authenticated identity claims from a user´s SSI wallet.
The MFA can include in the request to the SSI IdP Frontend the aiotID, in which case the user
just needs to confirm the request is for him/her and open their mobile wallet to provide their
credential. Alternatively, if the aiotID is not provided by the MFA component in its request to the
frontend, as per the registration flow or if the connectionID is not found, then the frontend will ask
the user to identify themselves by their verifiable credential identity, which is the email address in
first prototype P1. In the final prototype P2 it may be additionally supported a national identity.

3.1.3.5.5 Ledger uSelf mobile SSI wallet

The following figure shows a screenshot of the mobile SSI Wallet with an example of a Person
Verifiable Credential issued from the SSI IdP.

D4.2: Vertical Planes - second version

© ARCADIAN-IoT Consortium 2021-2024 Page 79 of 142

Figure 34 - Ledger uSelf mobile SSI Wallet UI

3.1.3.5.6 SSI IdP Backend design

The SSI IdP backend functions are described below.

Issuer Person Verifiable Credential

As a pre-requisite for registering users, it is needed for users to be issued with an identity
Credential to their mobile SSI Wallet. In the first instance this will be issued by the ARCADIAN-
IoT SSI Agent for the first prototype P1 and later it is under consideration in the final prototype P2
to be issued with a national eID outside of the frameworks SSI Agent.

A non-normative example of the Person Verifiable Credential issued by the framework´s SSI
Agent is given below:

{
 "@context": [
 "https://www.w3.org/2018/credentials/v1",
 "https://json-ld.org/contexts/person.jsonld"
],
 "id": "http://issuer.arcadianiot.eu/8a329249-d437-4c42-9d68-f6450215a11f",
 "type": ["VerifiableCredential", "PersonCredential"],
 "issuer": "did:web:issuer.arcdaianiot.eu",
 "issuanceDate": "2022-01-01T19:23:24Z",
 "expirationDate": "2032-01-01T19:23:24Z",

D4.2: Vertical Planes - second version

© ARCADIAN-IoT Consortium 2021-2024 Page 80 of 142

 "credentialSubject": {
 "email":"ross.little@ATOS.net",
 "familyName": "Little",
 "givenName": "Ross",
 "birthDate": “2001-04-18"
 },
 "proof": {
 "type": "Ed25519Signature2018",
 "created": "2021-11-13T18:19:39Z",
 "verificationMethod": " did:web:issuer.arcdaianiot.eu:#key-1",
 "proofPurpose": "assertionMethod",
 "jws":
"z58DAdFfa9SkqZMVPxAQpic7ndjjhghjhjSayn..1PzZs6ZjWp1CktyGesjuTSnmmn76mmwRd
o
 WhAfGFCF5bppETSTojQCrfFPP2oumHKtz"
 }
}

Person Authentication

The SSI IdP backend is responsible for persisting the connections the framework´s SSI Agent
has with the SSI Identity associated with the entity, which in the case of persons in the P1
prototype is the user´s email address.
Additionally, the SSI IdP will maintain a table of all registered users with the ARCADIAN-IoT ID,
the SSI ID and the entity type (in this case person).
Therefore, Person authentication with the user´s wallet will support the following scenarios:

1) During onboarding the authentication request from the MFA will not include the aiotID and
thus the frontend will request the backend to request the Person VC from the user´s SSI
wallet, based on the user´s SSI ID. In this case the backend will lookup the connection
persisted for that SSI ID to then request the Person VC to the SSI Wallet.

2) When the aiotID is included in the request from the MFA, the request for the backend from
the frontend will include the aiotID and the backend will lookup the SSI ID associated with
that aiotID before requesting the Person VC for the associated connection.

SSI Webhooks

Communications with the user´s mobile SSI Wallet is asynchronous and as such the SSI IdP
subscribes to the Broker to receive notifications. The following notifications are the main ones that
concern the SSI IdP:

• when the user has accepted a connection

• when the user has accepted an issued Verifiable Credential

• when the user has presented any Verifiable Credential
A non-normative example of a Webhook notification is as follows:

{
 "id":"string",
 "topic":"didexchange_states",
 "Message":{
 "ProtocolName":"didexchange",
 "Message":{
 "@id":"string",
 "@type":"https://didcomm.org/didexchange/1.0/complete",
 "~thread":{"thid":"string"},
 "~transport":{"~return_route":"all"}
 },
 "Properties":{
 "connectionID":"string",

D4.2: Vertical Planes - second version

© ARCADIAN-IoT Consortium 2021-2024 Page 81 of 142

 "invitationID":"string"
 },
 "Type":"post_state",
 "StateID":"completed"
 }
}

Person Registration

As part of person or IoT Device registration a new ARCADIAN-IoT Identity (aiotID) is requested
to the framework to be created and managed per Service Provider service. ARCADIAN-IoT
identity is managed within the framework was follows:

• A specific Service Provider service is responsible for registering their users to the
ARCADIAN-IoT framework.

• The same end users can be registered by other Service Provider services to ARCADIAN-
IoT, each with a different aiotID, so the end user can have multiple aiotIDs: one per Service
Provider service.

• When an SP wants to delete its user and all its associated data it only removes the
ARCADIAN-IoT component service data associated with that aiotID registered by that SP
service.

• If during a registration attempt a user is found to have an existing ARCADIAN-IoT ID
associated with their SSI ID for the same SP service the registration request will be
rejected.

• During registration the SSI IdP will provision the Network Authorization component with
the aiotID and received network token.

• During registration the SSI IdP will provision the Biometrics component with the aiotID and
received face image.

The ARCADIAN-IoT identity is therefore specified as follows:

"aiotID":"orgDomain:serviceName:UUIDv4"

The "orgDomain" and "serviceName is obtained from the registered DID WEBs of the Service

Provider (see section 2.1.3.2.2) and the UUID v4 is generated upon registration.

A non-normative example is:

"aiotID":"ATOS.net:dronebuddy:b666ca65-0faa-4e8b-a4bb-b5db253dd878"

IoT Device Registration

To be confirmed for final prototype.

Service Provider Registration

A JSON file is configured in the SSI IdP backend to provide a table of all registered Service
Provider organisation Decentralized Identifiers.
A non-normative example is given as follows:

{
 "organizationDIDs":[
 "did:web:ATOS.com",

D4.2: Vertical Planes - second version

© ARCADIAN-IoT Consortium 2021-2024 Page 82 of 142

 "did:web:ipn.pt",
 "did:web:truephone.com",
 "did:web:xlab.si"
]
}

Service Registration

Once a Service Provider organisation is registered in the ARCADIAN-IoT Framework it can
register the services that will make use of the ARCADIAN-IoT Framework (i.e. its component
services) for its end user Persons and IoT-Devices.
When a Service Provider registers a service it will create an aiotID and publish it to the event
bus, and store the registered service DID with its aiotID.

Data Model

The ssiID backend will keep a record of all registered ARCADIAN-IoT Identities and SSI
connections to user SSI wallets and IoT Devices SSI Agents as per the following data model.

Figure 35 - SSI IdP Data Model

Additionally, please refer to the Domain Model in section 3.1.3.5.2.

RabbitMQ

Upon registration of a Person or IoT Device the SSI IdP will publish a registration event to
RabbitMQ with the following identity attributes:

- aiotID
- entityType
- ssiID
- ssiClaims{}

3.1.3.5.7 Ledger uSelf Broker

The ledger uSelf Broker deployed in P1 is the background prototype Broker, developed in Kotlin,
as described in section 3.1.2.1.
To meet the needs of ARCADIAN-IoT deployment of the Broker IoT-Devices the Broker is being
re-written in GO so to be able to integrate it with the Hyperledger Aries GO Agent in one package.
This is planned for P2 and will provide a leaner implementation for more efficient operation in
devices with reduced resources, as compared with the typical cloud resources.

3.1.3.5.8 Security aspects

The framework security between the components is not added in P1 and will be added once the
interwork is proven in P2. Mutual TLS is currently the candidate technology to provide trusted and
secure communications between the ARCADIAN-IoT framework components.

D4.2: Vertical Planes - second version

© ARCADIAN-IoT Consortium 2021-2024 Page 83 of 142

3.1.4 Evaluation and results

The SSI IdP implementation is currently nearing completion of development and test in a local
environment and is under integration with the current version of ledger uSelf for supporting Person
VCs. Implementation of integrated broker and SSI Agent in GO is ongoing.

3.1.5 Future work

The following items are under the scope of future work:

• Complete integration for authentication and integration flows.

• Agree final interwork for IoT Devices, VC issuing, registration & authentication

• Replace current Ledger uSelf SSI Agent and Broker separate components with the one
integrated SSI Agent / Broker component

• Implement & integrate IoT Devices with SSI IdP & new integrated SSI Agent Broker

• Investigate to add support for SIOP OIDC4VP protocols as identified in section 3.1.2

• Agree support for constrained MCU IoT-Devices in Domain B considering SIOP / DPoP36
protocols and use of eSIM for public / private key needed to support Decentralized
identifiers.

• Investigate to support eIDAS Bridge / EBSI - ESSIF interoperability for supporting trusted
national eIDs

• Support BBS+ signatures to Present VC from the SSI Wallet

36 https://datatracker.ietf.org/doc/html/draft-ietf-oauth-dpop-02

https://datatracker.ietf.org/doc/html/draft-ietf-oauth-dpop-02

D4.2: Vertical Planes - second version

© ARCADIAN-IoT Consortium 2021-2024 Page 84 of 142

3.2 Authorization: Network-based Authorization enforcement and
authorization distribution (TRU)

3.2.1 Overview

3.2.1.1 Description

ARCADIAN-IoT has different technologies that relate with authorization processes. Specifically,
there is the Network-based Authorization enforcement, the authorization information distribution
to devices, both based in entities (e.g. devices) trustworthiness information or security reputation,
and the self-aware data privacy, where users (or IoT Service Providers) define authorization rules
to allow access to their data. In this section we will focus on the component that, on one hand,
enforces trust-based authorization rules in the cellular network core (between devices and
internet services), and on the other, informs devices’ secure element (eSIM, in the case) of the
trustworthiness level of the device where it is at.

3.2.1.2 Requirements

The requirements for this component are the following37:

• To provide a dynamic Network-based Authorization enforcement based on entities
trustworthiness level and security policies: A network-based enforcement tool (placed
in the core network) to control devices, persons, and services communication/interaction
based on those entities’ security reputation or trustworthiness.

• To distribute authorization information to devices’ secure element: Ability to securely
distribute information about devices’ trustworthiness to their hardware secure element, for
enabling actions of self-protection or self-recovery.

3.2.1.3 Objectives and KPIs

The Network-based Authorization enforcement and authorization distribution component
contributes to the accomplishment of the following objectives and KPIs.

KPI scope

This component contributes to the objective of providing distributed and autonomous models
for trust, security and privacy – enablers of a Chain of Trust (CoT).
The contribution is based on the enforcement of the defined model for trust, security, and

privacy, being this component a relevant autonomous agent able of receiving inputs from

ARCADIAN-IoT reputation system to enforce security actions.

In this sense, the main objective of this component is to research and develop a novel process

for communication authorization enforcement, according to entities trustworthiness level.

Measurable Indicator

1. Automatic bidirectional communication authorization enforcement for devices and people
according to trustworthiness levels and its dynamic changes related with security events (Y/N)
2. Time to enforce the authorization policy after the network being informed

Target value (M30) Current value (M20)

1. Dynamic bidirectional communication
enforcement according to security policies and
trustworthiness level
2. Near real time

1. Authorization enforcement just in the
direction of the subscribers / devices to the
internet, according to entities trustworthiness
level.
2. Near real time

37 Requirements enhanced since the last public deliverables according to the research

D4.2: Vertical Planes - second version

© ARCADIAN-IoT Consortium 2021-2024 Page 85 of 142

KPI scope

This component also contributes to the objective of self and coordinated healing with reduced
human intervention, by informing the eSIM of device’s trustworthiness information, triggering
the subsequent eSIM-based protection and recovery actions. In this case the research focuses
on informing the eSIM of devices trustworthiness level for it to be able to act as an enabler of
self-protection and self-recovery.
Measurable Indicator

1. Ability to securely inform the eSIM of devices trustworthiness level (Y/N)
2. Use of eSIM in device self-protection and self-recovery actions (Y/N)
3. Time to implement self-protection or self-recovery actions after the trustworthiness
information arrive the eSIM
4. Number of different devices where the innovation is demonstrated

Target value (M30) Current value (M20)

1. Y
2. Y
3. < 2 seconds
4. At least 2

1. Y
2. Y (preliminary prototype)
3. ~1 second (with 40% of network-related
outliers38 between 9 and 24 seconds)
4. 1

3.2.2 Technology research

To accomplish the research objectives of this component the work had the following phases:
(1) define a unified vision with the partner responsible for ARCADIAN-IoT reputation system,

which will be directly integrated with this component, being therefore critical to the action
of the Network-based Authorization.

(2) research on how to create a network testbed able of accommodating the Network-based
Authorization component – the network testbed allows testing the technology with virtual
devices (for research purposes, throughout the period of the project). At the end of the
project, for technology demonstration, the network testbed will connect real devices with
real networks.

(3) have a first working prototype of the component with basic security rules being enforced
automatically. The final prototype will have the security rules considered needed, which
are possible to implement in a core network PCF.

(4) have a mechanism to securely distribute the authorization information to devices secure
element, which, accordingly, will trigger processes of self-protection or self-recovery.

Depicting the functional understanding of the Network-based Authorization component, it
leverages the trustworthiness (i.e., the security reputation) of the entities communicating into the
network to enforce authorization rules. The simplest high-level example of this process is the one
of a device that, because it has a high reputation has access to all the systems and data it
requests, while one with low trust reputation has communication restrictions, for example, can
only communicate with ARCADIAN-IoT recovery services.

A more concrete example of the full functional flow that shows the integration of the Network-
based Authorization in an ARCADIAN-IoT scenario is the following:

At a given moment, and for no expected reason, drones A, B and C, all from the same
brand and model, which were just turned on to be available to provide Drone Guardian
Angel (DGA) service, start sending an unusual and very high amount of data (e.g. high

38 The events designated here as network-related outliers may not be controllable due to potentially being
related with the radio access network hardware, and therefore vary according to location and service
providers (and other factors uncontrollable by TRU)

D4.2: Vertical Planes - second version

© ARCADIAN-IoT Consortium 2021-2024 Page 86 of 142

resolution live and continuous video of its surroundings) to DGA backend services. While
performing their service, these drones are also sending the data, decrypted, to an
unknown internet service. If more drones have the same behaviour, this can cause service
degradation or even a full outage, potentially being a Denial-of-Service (DoS) attack to
DGA service. Also, sending data decrypted to an unknown service may be seen as a
serious security or privacy breach targeting DGA business or its users’ private data. These
behaviours hamper the IoT devices’ (drones in this case) ability to perform their service,
due to the quite suspicious behaviour and to the very high battery consumption.

ARCADIAN-IoT Behaviour Monitoring and Flow Monitoring detect these suspicious
behaviours and inform the Reputation System of these events. Considering the threats
posed by the drones and the existent security policies, the Reputation System reduces
their trustworthiness to the lowest rating possible.

At that moment, automatically, the Network-based Authorization is informed of the
devices security reputation changes and applies to their communication policies the rules
related to the lowest rating possible, e.g., that they cannot communicate with external
services or receive communication from any service beyond ARCADIAN-IoT Self-
Recovery. The same component also triggers information to the devices’ secure element
(to ARCADIAN-IoT applet in the eSIM profile), for them to take protective measures. From
this moment on, drones A, B and C cannot continue overloading DGA services nor send
decrypted data to the unknown internet services.

After components like device Self-Protection mitigate the threats, and after all self-
recovery processes are successfully taken at the devices, the Reputation System is
informed. According to the defined trustworthiness rules, the devices’ reputation is set to
a trustworthy level again. At the same time, automatically, the Network-based
Authorization mechanism redefines the communication policies for these devices, to
allow them to have normal communication again, informing as well the devices’ secure
element that the device is trustworthy again.

This scenario allows to understand the expected actions and interactions of the Network-based
Authorization component within ARCADIAN-IoT framework, when applied in the specific domain
of surveillance in smart cities with drones. However, the component, as all the framework, aims
to be agnostic to the IoT solution and the same principles apply to the contexts of, e.g., smart grid
monitoring or medical IoT.

3.2.2.1 Background

3.2.2.1.1 Adding trust-related policies to a core network and Open5gs

In today’s network architectures, communication authorization, the related policies, and billing are
already a focus point. 3GPP’s Policy and Charging Control (PCC) architecture39 provides access,
resource, and quality of service (QoS) control40 to mobile networks. Two components of this
architecture are the Policy and Charging Rules Function (PCRF) and the Policy and Charging
Enforcement Function (PCEF), or the Policy Control Functions (PCF), for 5G, an evolution of the
PCRF/PCEF with similar functionalities but adapted to 5G.

PCRF acts as the policy manager of the network, the central point of decision that provides policy
control and flow-based charging control decisions. The PCEF usually lives in the serving gateway,
can offer packet inspection capabilities, and enforces the rules provided by the PCRF. Besides
these two components, an Application Function (AP) interacts with other applications and services

39 https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=810
40 https://www.netmanias.com/en/post/techdocs/10997/lte-pcrf/policy-and-charging-rules-function-pcrf-in-
lte-epc-core-network-technology

https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=810
https://www.netmanias.com/en/post/techdocs/10997/lte-pcrf/policy-and-charging-rules-function-pcrf-in-lte-epc-core-network-technology
https://www.netmanias.com/en/post/techdocs/10997/lte-pcrf/policy-and-charging-rules-function-pcrf-in-lte-epc-core-network-technology

D4.2: Vertical Planes - second version

© ARCADIAN-IoT Consortium 2021-2024 Page 87 of 142

that require a dynamic PCC41. 3GPP’s PCC architecture describes an AP as “an element offering
applications that require dynamic policy and/or charging control over the IP CAN (IP Connectivity
Access Network) user plane behaviour”. The AP extracts session information and media-related
information from the application signalling and provides application session-related information to
the PCRF using the Rx42 protocol. This information is the part of the inputs used by the PCRF for
the Policy and Charging Control Decisions and the rules engine can be triggered by one of these
messages42.

Figure 36 - 3GPP's PCC Architecture overview41

Although the Rx interface is DIAMETER-based, efforts have been made by the 3GPP to provide
a RESTful approach, with XML as the content body format, to these functions. In this case, a
Protocol Converter (PC) acts as the middleman between the AF and the RX-speaking PCRF43.

It is worth noting that there are two types of PCC rules, predefined and dynamic. The former is
already set up in the PCEF and can only be activated or deactivated by the PCRF, while the latter
can be provisioned by the PCRF via Gx interface to the PCEF44 and can be activated, modified,
and deactivated in runtime.

In the context of ARCADIAN-IoT, PCRF/PCEF solutions can be leveraged to efficient and
dynamically route and prioritize network traffic40 as a means of providing trust-based authorization

41 https://www.juniper.net/documentation/us/en/software/junos/subscriber-mgmt-sessions/topics/topic-
map/3gpp-policy-charging-control-provisioning-accounting.html
42 https://www.netmanias.com/en/post/techdocs/10997/lte-pcrf/policy-and-charging-rules-function-pcrf-in-
lte-epc-core-network-technology
43 https://www.3gpp.org/more/1629-rx_interface
44 https://www.netmanias.com/en/?m=view&id=techdocs&no=11863

https://www.juniper.net/documentation/us/en/software/junos/subscriber-mgmt-sessions/topics/topic-map/3gpp-policy-charging-control-provisioning-accounting.html
https://www.juniper.net/documentation/us/en/software/junos/subscriber-mgmt-sessions/topics/topic-map/3gpp-policy-charging-control-provisioning-accounting.html
https://www.netmanias.com/en/post/techdocs/10997/lte-pcrf/policy-and-charging-rules-function-pcrf-in-lte-epc-core-network-technology
https://www.netmanias.com/en/post/techdocs/10997/lte-pcrf/policy-and-charging-rules-function-pcrf-in-lte-epc-core-network-technology
https://www.3gpp.org/more/1629-rx_interface
https://www.netmanias.com/en/?m=view&id=techdocs&no=11863

D4.2: Vertical Planes - second version

© ARCADIAN-IoT Consortium 2021-2024 Page 88 of 142

inside the network. PCRF/PCEF use policy-based authorization, however, as seen in 45, it is
possible to build a mixed authorization system that joins static and dynamic policy-based
authorization with different rules sources. This system combines the several factors to create a
flexible authorization framework. To implement the Network-based Authorization, and since we
expect to use the current PCC architecture, an analysis of network implementations was carried
out. The main aspects considered were the presence of an API that allowed to manipulate the
subscriber information and the related communication policies, but also, if possible, a free and
open-source solution.

Nowadays there are some solutions that fit this purpose, including Open5GS, Magma, srsEPC,
to name a few. The current choice, as testing hypothesis for the network testbed is
Open5GS. Open5GS “is a C-language open source implementation of the 5th Generation Core
(5GC) and Evolved Packet Core (EPC), i.e. the core network of New Radio/Long-Term Evolution
(NR/LTE) network.”, i.e., it supports the current 3GPP’s PCC architecture described before
(although without the OCS and OFCS, which are not relevant to our needs) and also the new
5GC service-based architecture where the policy is handled by the Policy Control Function (PCF).
Open5GS can be installed in Ubuntu through the package manager, but it also supports other
Linux-based operating systems by building it from the source code. It can be also run in a
dockerized environment or even in AWS, making it a great candidate for network testbed choice.

Figure 37 shows Open5GS architecture, which depicts its capabilities as network testbed. In what
regards the policy control functions (control plane), indispensable for implementing the Network-
based Authorization, it is possible to identify both a PCF and a PCRF, which indicates that
Open5GS can operate both in 5G and in previous generations of broadband cellular network
technology (e.g. 4G).

45 http://rewerse.net/publications/download/REWERSE-RP-2005-116.pdf

http://rewerse.net/publications/download/REWERSE-RP-2005-116.pdf

D4.2: Vertical Planes - second version

© ARCADIAN-IoT Consortium 2021-2024 Page 89 of 142

Figure 37 - Open5GS architecture46

Open5GS is supported by an active community and provides various resources that have been
source of knowledge for the current work:

• Website47 with blog, tutorials, and other documentation.

• GitHub repository48 with source code, issue tracker and discussion board.

• Discord server with a community chat room (invitation link is provided via GitHub’s
readme).

3.2.2.2 Research findings and achievements

The vision over the features of the Network-based Authorization component is stable and well-
accepted between the involved partners (the one responsible for the component and the ones
with interfacing technologies). The hypothesis of using PCRF/PCEF (4G) or PCF (5G) for trust-
based policy enforcement in the network core, seems quite robust. These technologies are
successfully proven in highly scalable mobile scenarios for real time policy enforcement.
Therefore, no reason is foreseen for not being possible to apply it for enforcing security related
communication policies in the envisioned IoT scenarios. The research focus is, therefore, in the
novel component that allows the integration between the Reputation System, the PCRF/PCEF or

46 https://open5gs.org/open5gs/docs/guide/01-quickstart/
47 https://open5gs.org/
48 https://github.com/open5gs/open5gs

https://open5gs.org/open5gs/docs/guide/01-quickstart/
https://open5gs.org/
https://github.com/open5gs/open5gs

D4.2: Vertical Planes - second version

© ARCADIAN-IoT Consortium 2021-2024 Page 90 of 142

PCF present in the network testbed, and the standardized network OTA services, to distribute the
trust information to the devices secure element.
To start validating the hypotheses formulated, the first prototype had the following characteristics:

1. Network testbed: Open5gs
2. One to two virtual devices in the network
3. Network-based Authorization system prototype considering just boolean reputation scores

and simple trust-based policies:
a. Reputation of 0 means a compromised device that can’t access internet services

until its reputation is recovered to 1;
b. Reputation of 1 means a trustworthy device that can communicate with any service

in the internet.
4. Trust information distribution to devices secure element (eSIM) via OTA services.
5. Deployment of the network testbed, including the virtual devices, and of the authorization

component in AWS for its integration with ARCADIAN-IoT reputation system.
The research process allowed to, not only functionally validate the aspects related with the
hypothesis raised for the solution, but also to understand limitations of the approach, and define
next steps. Some of the research findings and achievements can be found below:

• Functional validation: The current setup works as expected. In one hand, the security
policies are applied to devices according to their trustworthiness level (just 0 or 1 in this
first prototype) in near real time. In the other, the trust information is sent by the
authorization component via GSM OTA services to the eSIM secure element, and the
information is received by ARCADIAN-IoT security applet in two quite different devices:
an Android smartphone and a Linux-based IoT device (however, at the moment, self-
protection and self-recovery only works in the IoT device; the device middleware for
communication with the security applet is not implemented for Android devices yet).

• Real time authorization enforcement: The real time authorization enforcement was a
challenge found during the research using Open5GS as testbed. While the rules that
already exist on Open5GS PCRF were applied in real time, the newly generated rules, by
default, weren’t immediately enforced. This caused that a new rule was just applied when
the related device was reset. A new Diameter Agent, able of informing the network
components of the new rule was the solution to overcome this challenge.

3.2.2.3 Produced resources

Table 7 depicts the status of the current Network-based Authorization component, including the
network testbed.

Table 7 - Network-based Authorization component current produced resources

Subcomponent Brief description49 Prototyping status

1 Network
testbed

 Based on Open5GS and
deployed in AWS, it
allows to integrate the
Network-based
Authorization component
for research purposes,
including for the
demonstration scenarios
integrating real devices in
real networks.

The current
prototype is ready
for receiving
reputation-based
policies for binary
communication
enforcement (allow
all communication
for trustworthy
devices; block all

49 The brief description is for the whole component as expected according to the requirements. The
prototype status just describes the current prototype.

D4.2: Vertical Planes - second version

© ARCADIAN-IoT Consortium 2021-2024 Page 91 of 142

Includes the needed
network core elements,
and the additional
diameter agent for real
time enforcement of the
security policies.

communication to
compromised
devices). This
prototype also
informs the eSIM
security applet of
the subscriber
devices regarding
the authorization
information,
according to the
same policies,
allowing it to act
accordingly.
In a first stage, a
local deployment (in
a researcher laptop)
of the setup was
done and tested
successfully.
The current version
was deployed in
AWS for integration
with ARCADIAN-IoT
Reputation System
and successfully
tested with the
project messaging
(pub/sub)
infrastructure.
A demo of a working
prototype has been
done in an internal
(TRU) workshop, to
the partners in a
consortium meeting,
and to the European
Commission
reviewers of Y1
deliverables.

2 Network-based
Authorization –
reputation
interpreter and
network
security policy
generator

 Receives trust-based
policies - which rules
should be applied
according to entities
reputation scores.
Receives trust-based
reputation scores from the
entities in ARCADIAN-IoT
ecosystems (persons,
devices, services).
Performs the conversion
of the ARCADIAN-IoT ID,
which comes from the
Reputation System
attached to the reputation
score, to the network
subscriber ID (e.g. IMSI);
Automatically generates
PCRF rules according to
the trust-based policies
and each entity reputation
score;
Upon a new policy related
to a reputation change,
requests the diameter
agent to inform Open5GS
network components of
the new policy to be
enforced.
And triggers an OTA to
ARCADIAN-IoT eSIM
security applet to perform
device self-protection or
self-recovery (depending
on the reputation change).

A relevant result so far is that the hypothesis of using PCRF or PCF to enforce security rules
according to the needs of ARCADIAN-IoT seems to be proven. This assumption will prove to be
false if the research shows not to be possible to enforce rules with the granularity found to be
necessary, which is not foreseen. For the moment, according to the security policies provided by
the Reputation System is just expected the need for bidirectional control of the communication
according to entities trustworthiness. Specifically, the allow or block communications is
considered relevant; as well as to define a set of specific allowed or denied domains for a given
entity (e.g., a given device with a given reputation score can only communicate to a given Internet
service or receive commands from a given Internet service).
The major challenge found so far related with in the research and development of the network
testbed environment, particularly with having it enforcing security rules in near real time. This
challenge was overcome with a new subcomponent for Open5GS for propagating diameter
messages for the network components to trigger the new rule.

D4.2: Vertical Planes - second version

© ARCADIAN-IoT Consortium 2021-2024 Page 92 of 142

3.2.3 Design specification

3.2.3.1 Logical architecture view

Figure 38 depicts this component’ logical architecture. In ARCADIAN-IoT, we leverage existent
cellular network policy enforcement tools to enable novel mechanisms of dynamic communication
authorization. The innovation is that authorization is expected to be enforced according to the
entities’ trustworthiness level and security policies provided by ARCADIAN-IoT’s Reputation
System. This Reputation System will be informed by other ARCADIAN-IoT components of
security-related parameters that influence entities trustworthiness (e.g. Behaviour Monitoring or
Remote Attestation), passing this information to the components that may act according to
trustworthiness changes. In this sense, the Network-based Authorization component will be
informed of each entity trust information and automatically translate it in knowledge
understandable by the cellular networks’ functions that can act accordingly. By using PCFs or
PCRFs/PCEFs, mechanisms known for their scalability and performance, programmatically
orchestrated with the security-based Reputation System, we aim to automatically act in the
presence of threats or vulnerabilities, e.g. by blocking sensitive data leakage to the internet or
unauthorized control of devices behaviour from an internet service.

Figure 38 - ARCADIAN-IoT Network-based Authorization high-level architecture

Lastly, with the knowledge of entities (e.g. devices) trustworthiness information, the component
positioned securely in the core of 4G or 5G networks, therefore between devices and internet
services, will securely inform devices secure element (eSIM) regarding the devices level of
compromise. This will allow the ARCADIAN-IoT’s security applet to take actions of protection or
recovery according to devices’ trust level. More details about these specific actions can be found
in ARCADIAN-IoT’s deliverable D3.2, in the Hardened Encryption section.

3.2.3.2 Interface description

As described in previous section, the Network-based Authorization component will interact
directly with the Reputation System and with the eSIM security applet (further described in the
context of the Hardened Encryption component). The interfaces are the following (the Network-
based Authorization component should be seen as a consumer of the content exchanged):

Table 8 - Network-based Authorization interface status

Component
Communication

type
Content exchanged Status

D4.2: Vertical Planes - second version

© ARCADIAN-IoT Consortium 2021-2024 Page 93 of 142

Reputation
system

(publisher)

RabbitMQ
AMQP 0.9.1

Entities reputation
scores

Done from TRU side
for P1

Reputation
system

(publisher)

RabbitMQ AMQP
0.9.1

Reputation-related
policies to be enforced

Done from TRU side
for P1

eSIM GSM OTA services
Trust/reputation

information
Done

3.2.3.3 Technical solution

To depict the current technical solution, the architecture shown in Figure 39, extends the
previously analysed Figure 38, focusing now the technical details of the Network-based
Authorization component.

Figure 39 - Network-based Authorization current technical architecture

The integration vision defined by the involved parties (TRU for the Network-based Authorization,
and UC for the Reputation System) assumed that the communication between the Reputation
System and Network-based Authorization components will be made in a publish-subscribe
approach, with the Reputation System publishing information to two different topics, one with the
trust-related policies (i.e., which communication rules should be applied to
devices/people/services according to their reputation score) and another with the reputation score
for a given identifier. The trust-related policies are expected to be stable, with no frequent changes
happening. Each entity reputation score is expected to be more volatile, subject to security or
privacy related events detected and managed within ARCADIAN-IoT’s ecosystem.
As can be seen in Figure 39, both the Open5GS (open-source implementation of 4G / 5G core
network functions) and ARCADIAN-IoT Network-based Authorization component exist in a
network testbed, deployed in AWS for the moment.

D4.2: Vertical Planes - second version

© ARCADIAN-IoT Consortium 2021-2024 Page 94 of 142

The Network-based Authorization component has a major subcomponent named Reputation
Orchestration, whose functions are:

a. To receive and store reputation scores and policies
b. To consult the network subscriber identity (e.g. IMSI) that matches the ARCADIAN-IoT ID

that came attached to a given reputation score
c. To generate reputation-based communication policies, understandable by Open5GS,

according to the reputation scores received and the existent reputation policies; and
forward these policies and the related network subscriber ID to the Open5GS-Agent

d. To distribute authorization information to devices’ security eSIM applet (for self-protection
and self-recovery actions).

The second subcomponent of the Network-based Authorization has the purpose of
communicating with Open5GS, to place the new subscriber policies in the repository for that
purpose and perform the reset of a subscriber that has a new policy to be enforced in PCRF.
In the Open5GS, having the information of policies to be enforced in the proper repository, the
PCRF will assume the decisions over the communication flow accordingly, being them enforced
in the PGW (Packet Data Network Gateway from Open5GS).

3.2.3.3.1 API specification

No external APIs exist in the Network-based Authorisation beyond the interfaces specified in
Table 8. For details on the content received from the Reputation System please see Table 11 in
section 3.3.3.5.2.

3.2.4 Evaluation and results

The current technical results can be found in Table 7. This component shows unit and functional
tests, and integration tests with the eSIM security applet and with ARCADIAN-IoT
publish/subscribe infrastructure (which will connect with the Reputation System). These tests
were successful and, so far, the hypothesis of using PCRF / PCF for enforcing Network-based
Authorization based on entities trustworthiness remain valid. The use of Open5GS as testbed for
the network core elements necessary for the research also proved to be valid.

3.2.5 Future work

The envisioned future work focuses on building upon the current prototype to complete its
functionalities according to the requirements and KPIs. The assessment made in the context of
WP5 will inform the research direction as well. The envisioned future work if the following:

• Incorporate the final, more granular, set of trust-based policies, including authorization
policies for the flow from internet services to devices.

• Research on the integration of real devices with the technologies of the network testbed.

• Assess the possibility of integrating with ARCADIAN-IoT’s permissioned blockchain
component for retrieving the reputation policies and scores (avoiding thus the current
centralized database for the purpose).

• Perform the tests and evaluation of the final prototype.

D4.2: Vertical Planes - second version

© ARCADIAN-IoT Consortium 2021-2024 Page 95 of 142

3.3 Reputation System (UC)

3.3.1 Overview

3.3.1.1 Description

The Reputation System component in ARCADIAN-IoT determines the reputation values – score
associated with the entities in the ARCADIAN-IoT framework – persons, devices and services.
The reputation score represents the trust information regarding a certain entity, and such
information is built based on data received from other entities and services in the domains use
cases. In particular, different reputation algorithms are considered to build the score: a) the
alpha-beta model; and b) the dominance relationships.

3.3.1.2 Requirements

The requirements of the reputation system have been documented in D2.4:

• Requirement 5.3.1 – Information of Entities identification: The entities interacting with
the system need to be known by the reputation system. Such entities include persons,
IoT devices, and application/services.

• Requirement 5.3.2 – Information of Entities interactions: The interactions of the
diverse entities are input for the reputation score. Such interactions can be intra-
(example– device) or inter- entities.

• Requirement 5.3.3 – Trustable storage mechanisms for reputation: The reputation
system requires mechanisms to store the reputation of entities in a distributed and
trusted fashion, without single point of failure.

• Requirement 5.3.4 – Service registration in the reputation system: Services should
register in the reputation system and/or provide information of entities interactions in pre-
configured topics of the reputation system (e.g., Device and Network IDS events
received from device Behaviour Monitoring and Network Flow Monitoring components,
respectively).

3.3.1.3 Objectives and KPIs

The work of the reputation system is decomposed into the key objectives:

• Determine reputation score of entities interacting with the ARCADIAN-IoT framework in
the diverse domains.

• Support storage of reputation scores in a distributed and reliable fashion.

• Support the sharing of reputation information with components interested with the
reputation information.

As documented in D2.4 the main KPIs associated with the reputation system are threefold:
(1) Number of messages analysed per unit of time: Messages indicating interactions between
entities; (2) Time required to determine reputation; (3) Types of entities supported by the
reputation system, at least 3 types. These are detailed in the following tables.

KPI scope

Determine Reputation Score

Measurable Indicator

Number of messages analysed per unit of time
Benchmarking (OPTIONAL)

D4.2: Vertical Planes - second version

© ARCADIAN-IoT Consortium 2021-2024 Page 96 of 142

Events received through the message bus and processed per unit of time

Target value (M30) Current value (M20)

300 or higher 10

KPI scope

Determine Reputation Score

Measurable Indicator

Time required to determine reputation

Benchmarking (OPTIONAL)

Elapsed time since the message was received in the message bus till the determination of
its score.
Target value (M30) Current value (M20)

In the order of milliseconds In the order of seconds

KPI scope

Determine Reputation Score

Measurable Indicator

Number of entities supported in the reputation system
Benchmarking (OPTIONAL)

Not applicable

Target value (M30) Current value (M20)

3 entities 1 (devices)

3.3.2 Technology research

3.3.2.1 Background

This subsection documents the research in terms of reputation models, and available libraries,
technologies for a scalable stream processing.

3.3.2.1.1 Reputation Models

The determination of the reputation score can rely on different algorithms and approaches. Web
services like eBay, Amazon have their own reputation models running, which normally rely on
multiple mechanisms to aggregate the feedback provided by clients and users50.

Of particular interest in ARCADIAN-IoT is the consideration of the beta distribution51,52, that can
consider two types of events:

• ALPHA (a) – Number of events expressed as normal (positive) behaviour. Example user
performs registration in a device and provides all the required information.

50 A. I. A. Ahmed, S. H. Ab Hamid, A. Gani, S. Khan, and M. K. Khan, “Trust and reputation for Internet of
Things: Fundamentals, taxonomy, and open research challenges,” J. Netw. Comput. Appl., vol. 145, no.
September 2018, 2019
51 A. Josang and R. Ismail, “The beta reputation system,” in Proceedings of the 15th, bled electronic
commerce conference, vol. 5, pp. 2502–2511, 2002
52 Carlos Junior et al, “A Privacy Preserving System to Consult Public Institutions Records”, master
thesis, University of Coimbra, 2020, http://hdl.handle.net/10316/94061

http://hdl.handle.net/10316/94061

D4.2: Vertical Planes - second version

© ARCADIAN-IoT Consortium 2021-2024 Page 97 of 142

• BETA (b) – Number of events expressed as anomalous (negative) behaviour. As an
example, the user fails to perform login after 3 consecutive times.

Besides considering the nature of events, that is if they correspond to normal or anomalous
behaviour, it also includes a weight parameter that can correspond to the number of events of a
specific type. The reputation score is determined considering the following equation, which
determines the reputation value as a probabilistic value.

𝐸(𝑝) =
a

a + b

To specify preference over the most recent interaction behaviours there is the possibility of
using the Forgetting factor, where the value 0 means to consider only the most recent, while the
value 1 considers all the interactions seen so far.

In the beta distribution, the feedbacks can be provided in a pair of (r,s) with a normalization
weight, or as a single feedback (v), being r and s determined as illustrated in the following
equations.

𝑟 = 𝑣. 𝑤 𝑠 = 𝑤(1 − 𝑣)

The values of r and s are employed to determine a ALPHA and b BETA, respectively. The value
of feedback (v) can correspond to the rating of a service in a scale of 1 to 5.

The Dominance relationship-based reputation computation (DRBR)53 model is also of particular
interest for ARCADIAN-IoT as it allows to aggregate the reputation of the diverse services,
considering the information gathered from other entities, regarding a particular entity. In short,
aggregates the feedback provided by users, to a service X, considering the dominant values of
reputation. The DRBR model works in several steps:

1. Identify dominance relationships, services with higher preference, or with more positive
feedback

2. Model the services as a Directed Acyclic Graph (DAG), to allow chosing the services
that will be ranked, in case the dominance information is not objective.

3. Considering the DAG determine the rank of services, considering the following equation:

𝑟𝑖 =
max(𝐶) − min (𝐶)

|𝑆| − 1
. |𝑆| − 𝑖𝑑𝑥(𝑠𝑖 , 𝑅𝑆)) + min (𝐶)

Where ri corresponds rating being determined for service i, RS is the ranking of services, idx(si)
is the index of service I in the RS, and C corresponds to the rating scales.

3.3.2.1.2 Stream Processing

The determination of the reputation score requires information of events, which can be received
from the diverse components that are included in the ARCADIAN framework. In this regard,
there is the need to be able to process data (information of events) in a scalable fashion.

53 X. Fu, K. Yue, L. Liu, Y. Feng, and L. Liu, “Reputation Measurement for Online Services Based on
Dominance Relationships,” IEEE Trans. Serv. Comput., vol. 14, no. 4, pp. 1054–1067, Jul. 2021.

D4.2: Vertical Planes - second version

© ARCADIAN-IoT Consortium 2021-2024 Page 98 of 142

Data Stream Processing Engines (DSPEs) like Apache Spark, Apache Flink, Apache Storm,
Apache Samza54 provide the foundations to process events in a scalable fashion. According to
the state the art, the choice of Spark offers a set of functionalities that can be useful for the
Reputation System, such as: ability to process a high number of events – throughput, the
possibility of using in-memory storage to parse, process data according to certain filters; the
ability to perform processing in batch or in real time fashion.
Spark can also be easily integrated in applications developed in different programming
languages like Java, Python or Scala.

3.3.2.1.3 Policies and reputation

The reputation score by itself represents a value which may require additional information for
the enforcement of policies. There are different approaches for the policy management. For
instance, ETSI in the technical specifications TS 33.501, TS 33.117 or TS 118.103 introduces
the required elements to manage policies. Including components responsible to keep the
information of policies, others to determine the best policy to apply (PDP – Policy Decision
Point), and others to really apply the policy (PEP – Policy Enforcement Point).
In respect to the association of the reputation with policies, a simple approach is followed,
inspired by the iptables55 functioning mode. In a simplistic fashion there are default policies
(ACCEPT or DENY) which apply to all the flows, with the exceptions that are specified for
specific applications/services and endpoints. As a matter of example, The default policy can
deny all the traffic, but exceptions may accept the traffic that is intended to the port 443 where
the a web server provides content through the HTTPS protocol.

3.3.2.1.4 Privacy aspects in reputation (storage, processing)

The analysis of the privacy aspects focused the General Data Protection Regulation (GDPR)
that has been promoted by the European Union (EU). GDPR is composed by 11 chapters, but
being more relevant the chapters 2, 3 and 4 for the privacy aspects of the reputation system.

Considering chapter 2 which defines several principles that must be considered regarding data
management:

1. Lawfulness, fairness and transparency (on the treatment of the collected
data)

2. Purpose limitation (specific, explicit, and legitimate purposes are stipu-
lated by the controller for the processing of the data)

3. Data minimization (only the necessary data is collected)
4. Accuracy (the data should be updated and rectified or erased on subject

request)
5. Storage limitation (the data is only stored while required or needed)
6. Integrity and confidentiality (security measures are applied to guarantee

the security of the personal data)
7. Accountability (the controller is responsible to ensure and demonstrate com-

pliance)

Chapter 3, on its side, focuses on the rights of data subjects, like the right to be informed, of
rectification, of erasure, to restrict processing, among others. Chapter 4 defines controllers and

54 Isah, H., Abughofa, T., Mahfuz, S., Ajerla, D., Zulkernine, F., & Khan, S. (2019). A survey of distributed
data stream processing frameworks. IEEE Access, 7, 154300–154316.
https://doi.org/10.1109/ACCESS.2019.2946884
55 https://www.netfilter.org/

D4.2: Vertical Planes - second version

© ARCADIAN-IoT Consortium 2021-2024 Page 99 of 142

processors, which impact the reputation system, when considering the interaction with
blockchain.

Despite not being finalized, several data privacy concerns have already been identified in the
perspective of using Blockchain in the reputation system, as summarized in the table below.

Table 9 - Data privacy concerns (preliminar analysis)

GDPR Principle Data Privacy Concern

Lawfulness, Fairness No issue as long as it is supported the informed consent by the
data subject.

Transparency May have issues if there are several channels of communication
between the data subjects.

Purpose Limitation May have issues associated, requiring a clear and transparent
statement of the purpose, and access control mechanisms in
place.

Data Minimization There is a concern since the default mode of the blockchain is to
append data, and the multiple copies of the ledger.

Accuracy Blockchain assures immutability, but it is required the support for
rectification and erasure of the provided data.

Storage Limitation As blockchain append mode, some concerns regarding storage
limitation apply, leading to questions like “When does the data
become obsolete?”

Integrity No concerns.

Confidentiality Concerns can exist, depending on the mode of using the
blockchain (permissioned or permissionless).

Accountability The way blockchain is implemented can lead to issues.

3.3.2.1.5 Reputation System and its Relying Party functionality in the
attestation process

The Reputation System is being designed to act as a Relying Party in remote attestation
procedures. The research in this aspect has been initiated but has not yet solid results.

3.3.2.2 Research findings and achievements

The main research findings refer to the design and specification of the reputation system able to
formulate a score for the reputation of an entity. The research performed also aimed to validate
the reputation model, in particular the alpha beta model.

3.3.2.3 Produced resources

The produced resources include:

• The first version of the reputation system was initiated, implemented as a docker container
using Java programming language.

• The policy manager to allow all the CRUD of policies to associate with the reputation
values. This component also relies in Java technology and provides APIs and a frontend
for the interface with users (e.g. service providers or any other entity responsible for setting
the policies in the target application scenario).

D4.2: Vertical Planes - second version

© ARCADIAN-IoT Consortium 2021-2024 Page 100 of 142

3.3.3 Design specification

3.3.3.1 Logical architecture view

The reputation system aggregates information from several components to formulate the
reputation score, as depicted in the Figure 40.

Figure 40 - Reputation System & Policy Manager logical architecture view

The reputation system receives information, from at least 6 ARCADIAN-IoT components and
provides three types of information:

• Attestation Cue

• Reputation Updates

• Policies Updates

3.3.3.2 Sub-use cases (Recommended)

The sub-use cases are documented in detail per domain. The analysis in each domain identifies
the involved entities, how reputation can change for each one.
The following procedure is considered for the three domains (A, B, C):

• Initially the reputation is NULL for every entity

• According to the type of events that may occur, the reputation score is incremented (+) or
decremented (-). This implies a classification of events according to the information
associated with them.

• As per the type of events it is also determined which entity should have the reputation
updated.

A exemplified analysis is provided in the appendices:

• The appendix A, documents the results for domain A

• The appendix B, documents the results for domain B

• The appendix C, documents the results for domain C

D4.2: Vertical Planes - second version

© ARCADIAN-IoT Consortium 2021-2024 Page 101 of 142

3.3.3.3 Sequence diagrams

The following diagram depicts the internal functioning of the Reputation System to determine
reputation score.

Figure 41 - Reputation System internal logic to determine reputation score

3.3.3.4 Interface description

All requests to the reputation system are handled through the RabbitMQ component. The
information the Reputation System exchanges with other components is through the following
queues/topics:

• Attestation Cue – To ask remote attestation,

• Reputation Updates – To disseminate the changes in the reputation of an entity

• Policies Updates – To disseminate the configured policies in the use case for the domain.
The policies can include authorization policies (in prototype 1) and policies for attestation
(prototype 2).

The reputation updates are also planned to be shared with the blockchain within the respective
OpenAPI interface.

D4.2: Vertical Planes - second version

© ARCADIAN-IoT Consortium 2021-2024 Page 102 of 142

3.3.3.5 Technical solution

The Reputation System is implemented in Java, the following tables document the libraries used.

Table 10 - Technologies in the reputation system and policy manager

Component Description and third-party libraries

Reputation System • Spark

• Apache Commons (for alpha-beta distribution)

• Cassandra

• RabbitMQ

• Redis

Policy Manager Backend

• PostgreSQL

• Spring Framework

• REST APIs

• RabbitMQ
Frontend

• Node.JS

• React

3.3.3.5.1 Reputation score range

The reputation is formulated into a score in [0,1] range. Upon the need of the score levels, there
can be established as follows:

• LOW -> [0.0 , 0.3]

• MEDIAN -> [0.3 , 0.6]

• HIGH -> [0.6 , 1.0]

The policy manager has also a user manual to allow its employment by domain owners, as
documented in Appendix D.

3.3.3.5.2 API specification

A high level overview of the reputation interfaces is provided in Table 11.

Table 11 - Technologies in the reputation system and policy manager

Interface /Topic Technology and information items

Attestation Cue • CBOR (to comply with RATS specifications)

• Information Items to be defined

Reputation
Updates

• JSON format, and exchanged when there are modifications in the
reputation

• Information Items:
{
currentScore: <value of Reputation between 0 and 1>,
previousScore: <value of Reputation between 0 and 1>,
srcID: <AIoT Identifier>
}

Policies Updates • JSON format, and exchanged when there are CRUD operations
in the policies

• Information Items:
• Active (mandatory)

o Boolean representing whether the policy is active or not

D4.2: Vertical Planes - second version

© ARCADIAN-IoT Consortium 2021-2024 Page 103 of 142

• reputationRange (mandatory)
o Reputation range at which the policy is active
o Range [min, max]

• Description (optional)
o Optional text description of the policy

• Action (mandatory)
o Policy effect (allow or deny)

• SrcID (optional)
o Array with IDs of the domain targeted by the policy
o Can include: AIoT identifiers,

• DstID (optional according to policy)
o Array with IDs of the destination domain
o Can include: AIoT identifiers, IP addresses, FQDN

• DefaultPolicy (mandatory)
o Boolean if true the policy is a default policy for instance

to allow all the SrcIDs
o If false it is a specific policy (same logic of iptables)

3.3.4 Evaluation and results

This section documents the research results regarding the alpha beta testing distribution.

3.3.4.1 Experiment with Alpha-Beta model

A small script was made in Java to verify if the model is adequate to calculate and update the
reputation value to test the Alpha Beta model. With this, several tests were conducted where the
value of the ageing factor was varied, a low, medium and high value, to assess the influence of
this factor in the reputation calculation. Next, random events (positive and negative) were created
to determine the alpha and beta values trend. Finally, with this information, the results were added
to a CSV file to be able to evaluate the alpha, beta, variance and mean values.

The tests done to test the model were as follows:

• Ten positive events with an ageing factor of 0.5

• Ten positive events with an ageing factor of 0.2

• Ten positive events with an ageing factor of 0.8

• Ten negative events with an ageing factor of 0.5

• Ten negative events with an ageing factor of 0.2

• Ten negative events with an ageing factor of 0.8

• Four positive and three negative events with an ageing factor of 0.5

• 20 random events with an ageing factor of 0.5

Table 12 - Results of Alpha and Beta testing (with forgetting factor of 0.5)

0

0,5

1

1,5

2

2,5

1 2 3 4 5 6

Alpha e Beta

Alpha

Beta

0

0,1

0,2

0,3

0,4

0,5

0,6

0,

1 2 3 4 5 6

M
e
a
n

Mean

D4.2: Vertical Planes - second version

© ARCADIAN-IoT Consortium 2021-2024 Page 104 of 142

As per the achieved results there are different values that can be employed for the real value of
the reputation score: mean, variance. The results demonstrate that using the mean it is possible
to capture the impact of positive and negative events in the overall reputation score. For instance,
from the event 4 the beta value increases and the mean value of the reputation decreases.

3.3.5 Future work

The upcoming activities will focus on the determination of reputation score for the events received
from other components and for services in the domain use cases. The connection with the
blockchain and the remote attestation modules will be pursued.

D4.2: Vertical Planes - second version

© ARCADIAN-IoT Consortium 2021-2024 Page 105 of 142

3.4 Remote Attestation (IPN)

3.4.1 Overview

3.4.1.1 Description

The Remote Attestation for ARCADIAN-IoT (RA2IoT) aims to ensure that the application/services,
IoT devices, and the data required for their functioning (e.g., configuration information) have not
been modified and can be considered trustworthy.
ARCADIAN-IoT aims to support Remote Attestation, with the ability to leverage Root-of Trust
using a Secure Element – (e.g., eSIM, or crypto chip). The Remote Attestation component will
consider the heterogeneity regarding devices’ capabilities, targeting the support by both
constrained IoT devices (e.g. drones, industrial devices) to less constrained ones like
smartphones, being designed with efficient remote integrity verification and challenge-response
mechanisms, while being aligned with the IETF Remote Attestation Procedures (RATS) working
group56, by both continuously monitoring its main progresses (with respect to standardized
formats for describing claims and associated evidence, and procedures to deliver these claims)
and opportunities for contributions.
The support of remote attestation for assessing trustworthiness in IoT services is also scoped.
Namely, the integrity of services will be attested by appraising service-specific information from
IoT devices (e.g., service configuration properties). This approach can enable obtaining proofs
over the trustworthiness (and affect reputation) of both IoT devices (client perspective, e.g.,
smartphone in DGA service) and the service which the IoT device is supporting (server
perspective, e.g., drone in DGA service).

3.4.1.2 Requirements

The following requirements have been specified in D2.4:

• Requirement 5.4.1 - Attestation pre-installation: The (IoT) device must have or enable

the Attestation component pre-installation to enable Remote Attestation procedures.

• Requirement 5.4.2 – Attestation pre-installation: A common serialization format should

be used for both Evidence and Attestation Results, to minimize code footprint and attack

surface area.

• Requirement 5.4.3 – Watchdog timer - A watchdog timer should be implemented in a

environment with some level of protection to enable receiving regular and up-to-date

Attestation Results.

• Requirement 5.4.4 – Protocol data integrity - The integrity of Evidence and Attestation

Results should be protected (i.e., either via signing or a secure channel).

• Requirement 5.4.5 – Attestation procedure confidentiality - Confidentially of Evidence

and Attestation Results should be protected via encryption.

3.4.1.3 Objectives and KPIs

The work to be pursued for the remote attestation system has been decomposed in two key
objectives:

• Supporting Remote and Functional Attestation providing Root of Trust mechanisms with
Secure Elements

• Supporting Remote Attestation involving multiple verifiers

56 https://www.ietf.org/archive/id/draft-ietf-rats-architecture-16.html

https://www.ietf.org/archive/id/draft-ietf-rats-architecture-16.html

D4.2: Vertical Planes - second version

© ARCADIAN-IoT Consortium 2021-2024 Page 106 of 142

In the following, we present the KPIs associated with the two key objectives above.

KPI scope

Novel RATS-based Remote Attestation

Measurable Indicator

Number of devices/OS platforms supported by remote attestation

Benchmarking

Not applicable

Target value (M30) Current value (M20)

At least 2 None

KPI scope

Attribute-Based Encryption for Evidence

Measurable Indicator

Usage of Attribute-based encryption in evidence encryption

Benchmarking

Not applicable

Target value (M30) Current value (M20)

Used Used

KPI scope

Secure Element (SE)-based hybrid RoT for RA

Measurable Indicator

Supported secure elements (eSIM or cryptochip) as Root of Trust

Benchmarking

Not applicable

Target value (M30) Current value (M20)

At least 1 eSIM supported via Hardened Encryption (but not tested / validated)

KPI scope

Watchdog-based attestation triggering at Verifier

Measurable Indicator

Availability of a watchdog-based functionality to make sure the device is periodically attested

Benchmarking

Not applicable

Target value (M30) Current value (M20)

Available Not available

KPI scope

Support of Attestation Cues from Reputation System (for initiating new Remote Attestation

processes)

Measurable Indicator

Availability

Benchmarking

Not applicable

Target value (M30) Current value (M20)

Available Not available

KPI scope

Attestation Results feeding both device and service reputation models

Measurable Indicator

1. Types of IoT devices reputation affected by Attestation Results
2. Number of IoT services reputation affected by Attestation Results

D4.2: Vertical Planes - second version

© ARCADIAN-IoT Consortium 2021-2024 Page 107 of 142

Benchmarking

Not applicable

Target value (M30) Current value (M20)

1. At least 1
2. At least 1 (among domains A, B and C)

1. 0
2. 0

3.4.2 Technology research

3.4.2.1 Background

3.4.2.1.1 OWASP IoT Top 10 and Remote Attestation

OWASP IoT Top 10 is an online publication that gives insights into the security loopholes present
in the system, and results from a thorough review of the existing cybersecurity panorama. The 10

main threats for 201857 are depicted in - OWASP’s top 10 IoT security issues (2018 version).
The Remote Attestation solution under specification is expected to address several items of the
following list:

1. Insecure network services: one of the approaches suggested in the online report is to
ensure the installation of regular reports. By appraising software or firmware versions as
evidence, the Remote Attestation solution enables service providers to ensure only
updated devices will be authorized to access ARCADIAN-IoT-compliant services.

2. Insecure ecosystem interfaces: attestation goes beyond simple IoT endpoint
authentication and enables service providers to define policies and evidence which
endpoints must cope with continuously for being considered trustworthy.

3. Use of insecure or outdated components: As mentioned in item 1., remote attestation
is used to appraise software or firmware versions as evidence. Besides this, it is also used
to analyse hardware models and versions; this proves as an attractive feature for service
providers to enable access only to IoT endpoints which are up-to-date and known as
secure.

4. Insufficient privacy protection: ARCADIAN-IoT’s Remote Attestation ensures devices’
evidence confidentiality via Hardened Encryption (itself supported by eSIM as RoT to sign
encrypted evidence to ensure its integrity and trust).

5. Lack of device management: Remote Attestation is planned for usage by the Reputation
System (as Relying Party). The Reputation System, upon the specific policies of the
service provider (and its domain), will measure trustworthiness/reputation of IoT devices
based on attestation results (and other information), affecting their authorization levels
(e.g. leading to blacklisting).

57 https://wiki.owasp.org/index.php/OWASP_Internet_of_Things_Project#tab=IoT_Top_10

D4.2: Vertical Planes - second version

© ARCADIAN-IoT Consortium 2021-2024 Page 108 of 142

Figure 42 - OWASP’s top 10 IoT security issues (2018 version)

3.4.2.1.2 Evidence format

CBOR is one of the data models considered within IETF RATS WG. CBOR is a binary data
serialization based on JSON data model that is designed for small code size and small message
size, such as encryption keys, graphic data, sensor values, among others. It is defined in IETF
RFC 894958. CBOR was driven by the specific needs of IoT3, where devices have limited
capabilities and are supposed to run with low power. CBOR is encoded in (machine-friendly)
binary, instead of (human-oriented) JWTs (human-readable) JSON, importantly saving in bulk
data and allowing faster processing. This data format is the recommended data serialization layer
for the CoAP Internet of Things protocol59 that is used on CHARRA implementation of the IETF
RATS model for Remote Attestation procedures.60

A CBOR data item is encoded to or decoded from a string carrying a header byte containing a 3-
bit type and 5-bit short count. This is followed by an optional extended count and an optional
payload.
Because of its efficiency, practicality, and support of key protocols, we decided to use this format
to encode the claims.

3.4.2.1.3 Adversarial Assumptions

An adversary’s goal is to compromise a device without being detected by the Verifier. A recent
survey1 in the scope of remote attestation for embedded devices describes a hierarchical list of
adversarial assumptions regarding the level of access of the attacker to the attester as follows:

• Remote Adversary: the attacker can launch remote code attacks against the attester.

• Local Adversary: the attacker is on the same network as the attester and can interfere
with its communications.

• Physically Non-Intrusive Adversary: the attacker is physically close to the device but
not able to interrupt its service; side-channel attacks (including secrets extraction) against
the attester are possible but not power-related or physical tampering.

• Physically Intrusive Adversary: the attacker is in possession of the attester and can
power it off and physically tamper with its hardware.

Being hierarchical, any adversary in a given level of the hierarchy is capable of performing all the
attacks from adversaries at lower levels of the hierarchy, with Physically Intrusive Adversary being

58 https://datatracker.ietf.org/doc/html/rfc8949
59 https://en.wikipedia.org/wiki/CBOR
60 https://github.com/Fraunhofer-SIT/charra

D4.2: Vertical Planes - second version

© ARCADIAN-IoT Consortium 2021-2024 Page 109 of 142

at the top level and Remote Adversary at the bottom. Solutions are however not hierarchical
themselves, as they may be focused at particular issues or types of attacks.
In other words, the malware model clarifies what type of malware will be defended against by the
RA scheme and measures the assumed maximum level of compromise that a RA scheme
will defend against.
Scenarios where the adversary is in full control of the attester’s network are out of scope of the
ARCADIAN-IoT’s Remote Attestation solution.
The same survey further extends the threat model to include a malware model measuring the
ability of a dishonest/compromised attester to subvert attestation. The identified threats (i.e.,
Service File Malware, Service File-less Malware, Device file Malware, Device File-less Malware)
vary by target (i.e., attester’s service or the device itself) and where they will reside (i.e., in the
storage or in the RAM), which impact the associated danger/impact and footprint (evidence of
compromise).

3.4.2.1.4 Types of Attacks

Several types of attacks to remote attestation solutions have been documented in the literature.
Some are specifically against RA solutions which use timing as root of trust, where the Verifier
knows the precise latency of the attester’s evidence collection process as well as the round-trip-
time of the attestation request. Such attacks include:

• Proxy attacks;

• Precomputation;

• Overclocking;

• Evidence gathering optimization;
While those attacks can be defended via adequate security strategies (e.g. random challenge
time), timing-based RoT’s main limitations are the application in real settings, where timing can
be affected by varying network communication conditions such as congestion and the resulting
jitter.
There are also attacks specifically against RA approaches applying discrete evidence collection:

• Memory copy (file);

• Memory copy (fileless);

• Compression (of malware, legitimate files, etc);

• Split Translation Lookaside Buffer (TLB);

• I-cache inconsistency;

• Time of Check Time of Use (TOCTOU): an attacker is able to compromise an attester and
removing associated evidence before attestation time;

• Return Oriented Programming (ROP);

• Data Oriented Programming (DOP).

The following are guidelines for mitigating attacks against discrete evidence collection:

• Randomness in the time interval between the moments where the challenge is sent and
in the memory walk strategy.

• Evidence gathering compilation written in a way that doesn’t allow compression or
optimization.

3.4.2.1.5 Root of Trust

For the Verifier to trust the Evidence provided by the Attester, a Root of Trust (RoT) is mandatory.
Without a RoT, an attester could forge evidence or provide evidence that was generated by
another device or network entity.
The RoT is defined by which components of the attester (hardware, software or both) are used to
gather evidence. Previous software-based RA schemes provide assurance over the device (and
its evidence) by one of three main options, described below:

• Virtualization using a hypervisor:

D4.2: Vertical Planes - second version

© ARCADIAN-IoT Consortium 2021-2024 Page 110 of 142

o The major drawback of this option is that, not all devices may support the additional
computation and latency. This is particularly true in the case of IoT devices.

• Filling excess memory with random noise:
o Here, the level of noise is compared by the Verifier against a Reference value, as

any modification to the program memory will force the system to erase some of
the noise. In case the device is compromised, its attacker will not be able to recover
the same level of noise, being as such detected due to attestation failure.

o The major drawback is that, modern embedded devices have processes which
may change memory while operating normally, which would cause the attestation
to fail; compressing programs for an embedded system is not trivial.

• Timing & timestamping:
o In this approach, the verifier compares the latency of the attester’s evidence

collection algorithm and the exact round trip time of the attestation request with a
reference acceptable timeframe.

o However, due to network jitter in real environments it is not possible to rely on such
approach.

The hybrid root of trust is typically defined as using a combination of hardware and software
features; more concretely, it can be narrowed down to any RoT that uses specific hardware
features that are already available on certain embedded devices (e.g.TEEs such as the Intel SGX
or the Trusted Computer Group’s TPM, Memory Protection Units (MPUs), write-protected clocks,
and ROM).
Hardware RoT is considered as any purpose-built hardware that gathers and provides evidence
to the verifier for RA (e.g. a redesigned processor, security co-processors, or accelerator in the
system).

3.4.2.1.6 Nature of Claims/Evidence

With respect to their nature, two major types of evidence exist: Static or Dynamic.
Static evidence refers to evidence that does not change over time, such as boot sector of
memory, executable binary files, software configurations or information about hardware
components. This type of evidence, enables the detection of malware attacks, which reside in the
disk/storage of the device (i.e., Service File Malware, Device File Malware), such as settings or
binary modification. However, it does not enable detection of changes in memory-resident
resources (e.g., kernel or system call table).
Dynamic evidence refers then to evidence that may change over time, such as RAM contents,
information about running processes, contents of instruction cache (I-cache) or data cache (D-
cache). It enables in principle the detection of any type of malware, being it resident in the storage
or on the memory. Some dynamic evidence, such as cache contents, is more difficult to collect
and require hardware root of trust.

3.4.2.1.7 Claim collection methods

Discrete RA schemes collect evidence at a particular moment in time and are well suited for
static evidence. Continuous RA schemes collect evidence from the attester device over a period
of time. Continuous RA schemes are usually implemented along with a static RA. In general,
these schemes involve continuously/periodically monitoring the behaviour of given component on
an attester device.

3.4.2.2 Research findings and achievements

The main research achievements refer to the design and specification of a novel Remote
Attestation scheme with the following differentiating factors:

- eSIM-based hybrid Root of Trust (RoT) to sign the evidence, through Hardened Encryption
o indirectly supported via integration with Hardened Encryption component; to be

tested and validated;

D4.2: Vertical Planes - second version

© ARCADIAN-IoT Consortium 2021-2024 Page 111 of 142

- support of Attribute Based Encryption (ABE) for protecting evidence data confidentiality
and enabling different entities (e.g. Verifiers) to access different sets of claims

o currently partially implemented;
- RATS-alignment, by adopting the CBOR format to encode and transmit evidence,

attestation results, and reference values
o implemented and tested using dummy data;

- “Watchdog-based” periodic attestation triggering by the Verifier
o Not yet implemented;

- Support of “Attestation cues” from the Reputation System, as requests to the verifier to
trigger an attestation process

o Not yet implemented

3.4.2.3 Produced resources

An intermediate implementation of the Remote Attestation system, referred to as RA2IoT, was
initially produced, employing mbedTLS2 library for cryptographic functions (encryption and
decryption). This version was then evolved by replacing the mbedTLS library with Hardened
Encryption's ones. The implementation of RA2IoT is located in the project’s Gitlab repository:

https://gitlab.com/arcadian_iot/remote_attestation.

3.4.3 Design specification

3.4.3.1 Logical architecture view

The novel Remote Attestation solution proposed within ARCADIAN-IoT is itself enabled by the
novel combination between Hardened Encryption’s Attribute-based Encryption (ABE) and GSMA
IoT SAFE-compliant eSIM as RoT for signing the resulting encrypted data (i.e. the hash). In
general, the eSIM signature as RoT strengthens the encryption process by ensuring data
provenance and avoiding impersonation attacks where malicious agents send data on behalf of
other devices. The same general principle is transposed to the Remote Attestation process, with
the eSIM acting as RoT for the specific case of attestation evidence data transmitted by the
attester. Furthermore, the result from the attestation process is processed by the Reputation
System, affecting entities reputation according to pre-established manufacturer- or service-
specific policies.

Figure 43 - Remote Attestation logical architecture and external dependencies

https://gitlab.com/arcadian_iot/remote_attestation

D4.2: Vertical Planes - second version

© ARCADIAN-IoT Consortium 2021-2024 Page 112 of 142

3.4.3.2 Sub-use cases

Reference Value transmission for Device Attestation
In this case, acceptable reference configuration values for attesting the claims associated to
device integrity are obtained by the device Verifier. These are typically obtained from the
manufacturer. Example use cases include A1,

Reference Value transmission for Service Attestation: Service Provider sends acceptable
reference configuration values to the Verifier responsible for attesting the service-specific claims.

Remote Attestation Procedure for Devices
Remote Attestation procedures can be initiated according to two different ways:

a) Via an Attestation Cue from the Reputation System (e.g. upon sudden reputation
decrease, event received from Behaviour Monitoring

b) Regular, watchdog-based attestation cycle, initiated by the responsible Verifier (which
may either be responsible for appraising device, service-specific or both types of
evidence).

In this use case, remote attestation is used to appraise either devices’ (e.g. HW model, build
version) or service-specific (e.g. application fingerprint) claims, leading to multiple possible main
scenarios:

a) Remote attestation successful: all evidence has been appraised leading to attestation
results passing the established evidence appraisal policies.

b) Remote attestation partially successful: part of the claims have passed according to
the established evidence appraisal policies.

c) Remote attestation failed: all of the claims have passed according to the established
evidence appraisal policies.

d) Invalid remote attestation response: the response obtained by the Verifier contains
critical issues (e.g. wrong nounce) which could be an indicator of attack attempt or
intrusion.

Each of the previously mentioned reference use cases can also be distinguished according to the
type of devices (i.e. smartphone, industrial IoT device, drone), where the reference values and
appraised evidence will be different.

D4.2: Vertical Planes - second version

© ARCADIAN-IoT Consortium 2021-2024 Page 113 of 142

3.4.3.3 Sequence diagrams

Note: While a single Hardened Encryption Library box is represented, Attester and Verifier
leverage distinct Hardened Encryption libraries instances: the former at the device, and the latter
at the infrastructure / network side.

3.4.3.4 Interface description

3.4.3.4.1 Internal interfaces

Attester – Verifier
This interface is used by the Attester to send the evidence to the Verifier. Reversely, the Verifier

uses it to trigger remote attestation procedures. The Constrained Application Protocol (CoAP) is

used for evidence transmission from the Attester to the Verifier. CoAP is specified by RFC7252

and is a document transfer protocol like Hypertext Transfer Protocol (HTTP). It has been designed

from scratch for constrained devices, leveraging bit fields and mappings to keep the packets as

small as possible. CoAP is based on a simple client/server model and follows the RESTful

paradigm. Moreover, CoAP uses User Datagram Protocol (UDP) as transport protocol;

alternatively, the secure Constrained Application Protocol (CoAPs) scheme utilizes DTLS (instead

of UDP) and guarantees confidentiality, integrity and authenticity of the CoAP packets.

In each evidence transmission, a nonce is included to minimize threats against (and enhance

trustworthiness in) the attestation procedure. A nonce is a random sequence (e.g., of bytes) that

uniquely identifies each Attestation Request. Its purpose is to ensure the freshness of information

and prevent replay attacks. This random sequence is generated by the verifier and sent to the

D4.2: Vertical Planes - second version

© ARCADIAN-IoT Consortium 2021-2024 Page 114 of 142

attester in the attestation request. Upon receiving it, the attester must copy it and include it in the

evidence, along with the claims. Claims and nonce, forming the evidence, are then encrypted and

sent to the verifier, that checks if the received nonce is the one expected before evaluating the

claims. If the nonce is different, then the attestation process fails.

3.4.3.4.2 External interfaces:

Attester – Hardened Encryption (libraries)
The Hardened Encryption libraries are used by the Attester to both perform cryptographic
operations and to retrieve its ABE keys. It begins with a registering step, where it uses the
provided libraries to request its keys, according with its attributes to the Hardened Encryption -
Key Management sub-component. When, upon request by a Verifier, it generates evidence, the
libraries are used to encrypt and sign (with its eSIM key) this evidence, before sending it to the
verifier.

Attester – Hardened Encryption (Key Management)
The Attester obtains encryption keys from the Hardened Encryption (Key Management) during
the initial registration step, for each of its attributes, that are used for its cryptographic operations.

Verifier – Hardened Encryption (Key Management)

The Verifier uses this sub-component in the same way as the Attester’s.

Verifier – Hardened Encryption (library)

In general, the Verifier uses this library in the same way as the Attester. It begins with the

registering step but then, instead of encrypting, it decrypts the evidence received from the

Attester.

Verifier – Reputation System
The Verifier transmits the attestation result (i.e. the outcome of the evidence appraisal) to the

Reputation System via the ARCADIAN-IoT message bus. The message bus is also used by the

Reputation System to send Attestation Cues (for initiating remote attestation procedures upon its

policies).

Verifier – Service Provider

Interface used by Verifier to collect Reference Values associated to ARCADIAN-IoT compliant

services (e.g. DGA, Medical IoT). Similarly to the interface with the Reputation System, the

information will be received via the message bus.

D4.2: Vertical Planes - second version

© ARCADIAN-IoT Consortium 2021-2024 Page 115 of 142

3.4.3.5 Technical solution

3.4.3.5.1 Deployment architecture view

Figure 44 - Remote Attestation for ARCADIAN-IoT (RA2IoT) deployment architecture view

3.4.3.5.2 API specification

No APIs are provided by Remote Attestation. Information exchange with external entities will be
done via the ARCADIAN-IoT message bus exchange ra_exchange for:

rReceiving Attestation Cues, through the ra_exchange.attest_cue topic;
Sending (device and service) Attestation Results (information exchange with Reputation
System), through the ra_exchange.attest_results topic;
rReceiving service-specific Reference Values (information exchange with Service
Providers), through the ra_exchange.ref_values.

3.4.3.5.3 Security aspects

IETF’s draft on Reference Interaction Models for Remote Attestation Procedures61 states two
essential requirements to be fulfilled so that the appropriate transmission of evidence is
ensured. These are:

• Integrity: the information transmitted by the attester must be integral – i.e., the
transmitted information should not be inadvertently modified in any situation;

• Authenticity: the guarantee that the information transmitted is from the attester that it is
supposed to be.

These requirements are necessary conditions to guarantee to the verifier that the attester is the

one expected and that the information was generated by this attester. However, they are not

enough to trust the actual information – the evidence – provided by the attester and to grant

permissions for it to access the specific services it might request.

To assess the trustworthiness of the evidence, first the verifier needs secure statements that

provide assurance of the attester’s capabilities to securely generate and transmit evidence

(endorsements), provided by trusted entities (endorsers).

61 https://www.ietf.org/id/draft-ietf-rats-reference-interaction-models-06.html, section 4

https://www.ietf.org/id/draft-ietf-rats-reference-interaction-models-06.html

D4.2: Vertical Planes - second version

© ARCADIAN-IoT Consortium 2021-2024 Page 116 of 142

The main endorser is the ARCADIAN-IoT's hardened encryption component. Since the attester
uses this component’s libraries to encrypt the evidence, the endorsement takes place by having
the hardened encryption’s key management subcomponent provide keys to the verifier, so that
it is able to (functionally) decrypt the evidence. Additionally, since it performs the signature of
evidence, via the attester’s eSIM, it ensures non-repudiation to the verifier. In more detail, the
Hardened Encryption – Key Management subcomponent - is expected to provide to the target
Verifier(s) the attribute/decryption keys (as endorsements) required to (functionally) decrypt the
necessary attestation claims. The data is decrypted only if the set of attribute keys belonging to
the entity satisfies the access policy. The data is always encrypted with the same public key
(technically belonging to the Attribute Authority, which check entities eligibility for attribute keys
and delegates them to the respective entities).

3.4.3.6 Other technical specifications

3.4.3.6.1 Target claims

Claims are taken from the target environment and, along with the nonce, are part of the Evidence.
They represent characteristics of an Attester’s Target Environment.
The following list of claims is currently being considered for the smartphone as less constrained
IoT devices (in domains A and C):
a. Product: A value chosen by the device implementer containing the device’s development

name or code name.
b. Device: A value chosen by the device implementer identifying the specific configuration or

revision of the device's body (sometimes called "industrial design").
c. Board: A value chosen by the device implementer identifying the specific internal hardware

used by this device.
d. Version release: The version of the currently executing Android system.
e. ID: An identifier chosen by the device implementer to refer to a specific release. In the project,

each device will be attributed a uniquely identifiable ID by the ARCADIAN-IoT framework.
f. Version Incremental: A value chosen by the device implementer designating the specific

build of the currently executing Android system. A typical use of this field is to indicate which
build number or source-control change identifier was used to generate the build.

g. Brand: A value chosen by the device implementer identifying the name of the company,
organization, individual, etc. who produced the device.

h. Android version/API Level - Applications can use a manifest element provided by the
framework API — <uses-sdk> — to describe the minimum and maximum API Levels under
which they are able to run, as well as the preferred API Level that they are designed to
support.62 The SDK level (integer) the phone is running is available in
android.os.Build.VERSION.SDK_INT.

i. Device State – Check if the device state is LOCKED – prevents from flashing new software
to the device, verification is enforced – or UNLOCKED – allows modification.63

As for the Drone (in domain A), the following claims will be considered:
a. OS Release
b. OS Version
c. Hardware – “uts.machine”
d. Device state
e. GPS location

62 http://www.dre.vanderbilt.edu/~schmidt/android/android-4.0/out/target/common/docs/doc-comment-
check/guide/appendix/api-levels.html
63 https://source.android.com/security/verifiedboot/device-state

D4.2: Vertical Planes - second version

© ARCADIAN-IoT Consortium 2021-2024 Page 117 of 142

As for claims in the context of industrial devices, it is still subject to analysis, as the support of
RA2IoT in the smart grid use cases (domain B) is unclear.

Furthermore, in the scope of Service Attestation, the target claims are under discussion and
specification with the domain owners, with one clear target being the application fingerprint.

3.4.3.6.2 Reference Values and Appraisal Policies

Reference Values are sets of values provided by Reference Value Providers and used by the

verifier – as reference – to assess (compare) the validity or suitability of the evidence’s claims, in

the verifier’s evidence appraisal policy. Given the claims presented in the Section 3.4.3.6.1, we

consider as Reference Value Providers the manufacturers of the devices (or of its components).

As for Service Attestation, the Reference Value Providers will typically be the Service Provider.

The exact values to be considered will be established later, driven both from the decision on target

claims and from the specifications on the use cases implementation (in D5.3 and as a result of

the work on Tasks T5.2-T5.4), where exact hardware and software to be used, as well as

applicable appraisal policies in each domain / use case will be agreed.

Upon receiving the response to the attestation request, and having the contained evidence

decrypted by Hardened Encryption, in general, the following procedure is executed by the Verifier

in order to appraise the received evidence:

1. Checks if the nonce matches the one sent in the attestation request – a random value

used to prevent replay attacks.

2. Appraises each claim, according with the reference values, given by the reference value

providers.

3. Stores the attestation results in a data structure and sends them to the relying party (a

role fulfilled in RA2IoT by the Reputation System).

3.4.3.6.3 Attestation Results

After the Evidence is appraised in the Verifier, the Attestation Results are generated and stored
in a data structure before being sent to the Relying Party. The data structure contains the
following attributes:

• A-aiotID of the device being attested

• The result of the attestation response’s signature verification (a Boolean value).

• The result of the nonce’s verification (a Boolean value).

• Information related with the validation of the claims

3.4.3.6.4 Supported approaches to initiate Remote Attestation

A Remote Attestation procedure of a given device may either be run periodically, i.e., being
repeated after a given time has passed, or on-demand, requested by the Relying Party (the
Reputation System in ARCADIAN-IoT). In the first case, remote attestation procedures are
periodically triggered by an internal process of (one of its) associated Verifiers (e.g., ensuring
attestation every t seconds) - we refer to this as “Attestation Trigger”. In the latter, remote
attestation procedures are spawned by the Reputation System (RS) as the result of a given event
and the RS stored policies (which should consider aspects including expected frequency, energy
availability and consumption rate) - this is referred to as “Attestation Cue”.
Since the attestation process follows a challenge-response interaction model, the periodic
triggering of the attestation process is employed by having the Verifier sending an attestation
request to the Attester when the time is due. As such, when the RS requests a remote attestation

D4.2: Vertical Planes - second version

© ARCADIAN-IoT Consortium 2021-2024 Page 118 of 142

procedure, what it is actually doing is cueing the Verifier to trigger the procedure, hence the name
“Attestation Cue”.

3.4.4 Evaluation and results

At this point, as mentioned in the achievements and as a result of the implementation of the
attester and verifier functionalities, including the support for CBOR for evidence encoding and
transmission, the ARCADIAN-IoT remote attestation procedure has been partially validated,
considering dummy data (thus agnostic to any particular environment). The support of ABE for
Remote Attestation has been validated after successful integration with the Hardened Encryption,
however additional tests are necessary (e.g. involving 2 different Verifiers in the same use case).
The effective support (demonstration) of eSIM-based hybrid RoT will be validated once testing
has moved to real environments / devices.

3.4.5 Future work

The upcoming activities will be focusing on 1) the support of real execution environments
(smartphones and drones), 2) specifying and implementing approaches for remote attestation of
services running in IoT devices, and establishment of approach for enabling multiple verifiers (e.g.
Verifier for device attestation according to device manufacturer policies, Verifier for service
attestation according to service provider policies); 3) the definition of policies for translating
attestation results into entities (devices and services) reputation updates and implementing the
interface (via ARCADIAN-IoT’s message bus) with the Reputation System for receiving
Attestation Cues and transmitting Attestation Results; 4) the research and implementation of
approaches for enhancing the remote assessment of the device’s integrity and trustworthiness of
the measurements it provides.

D4.2: Vertical Planes - second version

© ARCADIAN-IoT Consortium 2021-2024 Page 119 of 142

4 RECOVERY PLANE

4.1 Self-recovery (XLAB)

4.1.1 Overview

4.1.1.1 Description

The Self-recovery component is composed of a storage server, that exposes a REST API via
HTTP/S and client-side (on-device) scripts, that allow devices interface with the storage server
and store and retrieve backups. The types of data that will be stored will vary from device to
device, ranging from configurations that are required for the device to operate normally, system
logs, on-device application data and if necessary, data gathered by sensors.

The results of Hardened Encryption task will be used to secure the backups and also provide
layered access policies to different level users, for example, device owners will be able to decrypt
all backups, while system administrators will be able to decrypt system logs only. The preferred
location of data encryption is on the device itself, though resource constrains may render the
encryption process unfeasible. Addressing this issue will be an encryption proxy that is able to
receive plain data, encrypt it and either returning it to the device, or forward it to the storage
module of the recovery component.

In cases where the devices are simple sensors without an operating system, the client-side
recovery scripts can be instead run from a gathering/controller device, for example a phone that
uses Bluetooth to connect to sensors.

The ability of a device to access the recovery services is verified during each device-server
interaction, one of the metrics checked is its reputation score, meaning a device with
compromised security will need to go through one or more processes to increase its
trustworthiness score, such as credential recovery, described in section 4.2, before being allowed
to either store or retrieve a backup.

To address concerns regarding storage of sensitive data or, more generally, data privacy, the
concept of attachable storage will be investigated, where the actual backups are stored on-
premises, while the ARCADIAN platform only stores backup metadata.

4.1.1.2 Requirements

A recall of the requirements defined in WP2 with further supplemental information as needed.
Further clarifications of existing requirements and/or new requirements, can be detailed here.

Requirement 7.1.1 – Recovery mechanism

Each recovery system requires first an organised and detailed description of a running system.
On second step we need to collect all data, that define a targeted system or process and all
processes that are needed to set a system in an operational state.

From the resource aspect, the recovery system needs the access to the data required for
recovery, set of scripts that set up the processes and the machine which can run the recovery
process and has access to the services and/or infrastructure that require recovery (network
connectivity, etc).

In addition to the requirements outlined in WP2, recovery scripts will also perform periodic data
backups that will be uploaded to the Self-recovery data storage server. The backups will be

D4.2: Vertical Planes - second version

© ARCADIAN-IoT Consortium 2021-2024 Page 120 of 142

encrypted both in transit and at rest using the results of the Hardened Encryption task. Remote
data backups will enable quick replacement of devices that are either malfunctioning, lost or
stolen.

4.1.1.3 Objectives and KPIs

KPI scope

The recovery process is successful if the application/process/device is running as expected.

Measurable Indicator

A device that experiences storage failure or is faulty and must be replaced by a new unit,
can recover its backed-up data and resume functionality (after performing the credential
recovery process)

Target value (M30) Current value (M20)

Recovery process works on actual device

Recovery process works on simulated
device (VM)

KPI scope

Data can be encrypted in a selective way, by applying a policy that defines which
stakeholders, relying on their public keys, can decrypt partial or complete data.

Measurable Indicator

Backup encryption policies enable stakeholders to be granted selective access to different
types of data based on a user’s role

Target value (M30) Current value (M20)

Selective decryption based on user access
level and encryption policy

General encryption of backups, only the
device can decrypt its backup

4.1.2 Technology research

4.1.2.1 Background

Particular emphasis was placed on the selection of the storage technology for the Self-recovery
component. Initially, XtreemFS was chosen for its simplicity and performance, but during the
implementation phase, certain problems were encountered when the testing environment
changed to newer versions of operating systems (specifically, CentOS 7 -> CentOS Stream 8).
The choice of the storage backend then shifted to CEPH, which is more complex, but also more
robust and has a better update and support lifecycle.

4.1.2.2 Research findings and achievements

XtreemFS 64was the first choice for integration as a storage backend due to its capabilities of
scalability, fault tolerance and relative ease of administration. While initial tests of the system were
successful, subsequent testing in a cloud environment revealed issues with XtreemFS that made

64 http://www.xtreemfs.org/

D4.2: Vertical Planes - second version

© ARCADIAN-IoT Consortium 2021-2024 Page 121 of 142

it untenable as a choice in a modern platform, mainly the use of older versions of dependencies
that made it a challenge to run on more recent operating systems, while using old versions of
software is also undesirable from a security perspective. Subsequently, CEPH 65 became the
choice for the storage backend. While it is more complex, even a minimum deployment must
consist of at least a monitor, that has an overview of the storage cluster status, and an OSD
(Object Storage Daemon), its use once the initial setup is done is also quite simple.

The other technology choice question outlined in the previous period was the choice of the REST
API framework. OpenAPI specification is the appropriate choice, as its self-documenting feature
is a great help when integrating with other components. The first prototype version of the Self-
recovery component uses a NodeJS implementation of OpenAPI v2, during development towards
prototype 2, the specification will move to OpenAPI v3 and the server will be rewritten in Golang.

4.1.2.3 Produced resources

The first prototype version of the Self-recovery component is available on the project’s Gitlab
repository66. It includes the server component, client-side scripts for performing the recovery
operations in Bash and an Ansible deployment script that provisions a single-node CEPH cluster
and the Self-recovery server component. The deployment can be tested with an included demo
script that simulates a backup operation, device failure and data recovery.

4.1.3 Design specification

4.1.3.1 Logical architecture view

Figure 45 - Self-recovery logical architecture view

Self-recovery comprises client-side (on-device) and server modules, where the backups and
related metadata are stored. Figure 45 depicts the basic structure of the component, but omits
interactions with other ARCADIAN-IoT components, which will be described in the next section.
The backups produced by the client-side module are sent to the server, where they are stored on

65 https://docs.ceph.com/en/quincy/
66 https://gitlab.com/arcadian_iot/self-recovery/-/tree/develop

https://gitlab.com/arcadian_iot/self-recovery/-/tree/develop

D4.2: Vertical Planes - second version

© ARCADIAN-IoT Consortium 2021-2024 Page 122 of 142

a CEPH cluster, while that backup metadata (size, time, signature etc.,) are stored in a standard
relational database.

4.1.3.2 Interface description

The REST API of the Self-recovery server allows the client-side recovery script to manage its
data. The on-device module is capable of listing the device backups, upload new backups,
performing attestation of the uploaded backups and initiate the data recovery process by
downloading a backup.
All requests between the client-side and server modules are moderated by the Authentication and
Authorization components of the ARCADIAN-IoT platform, verifying the identity and access
permission to a set of device backups, supported by the Reputation system, meaning that even
a device with valid credentials may be denied access if its reputation score is too low, indicating
the device is compromised.
Self-recovery also communicates with the Reputation system, thus affecting the reputation score
of a device. Consistent frequency and size of backups would positively influence the reputation
score, while frequent or failed recovery operations would lower it.
The client-side module interfaces with Hardened Encryption (HE) to encrypt backups before they
are sent to the server for storage, ensuring data encryption both in transit and at rest. The server
is capable of attestation of the uploaded backups, verifying their integrity, but is not capable of
decryption, backups can only be unpacked by the device, or an actor with sufficient level of access
defined by the HE encryption policy.
In addition to encryption of backups, payloads are also signed by the on-device eSIM
components, adding another layer of security to the communication channel between the IoT
device and the server component, residing on the ARCADIAN-IoT platform.
While consistent backup operations can be achieved with a simple job scheduling tool, such as
crontab, triggering recovery operations is more complex. A recovery operation may be initiated
manually by an administrator, in cases of maintenance or repair of hardware malfunctions, or by
an event notification of the Device Self-protection component. The latter case is also split into two
options, if the device requires the restoration of identifiers, the credential recovery (see section
4.2) process must be completed before data recovery can commence.

4.1.3.3 API Specification

The API specification of the Self-recovery server module is described in Swagger OpenAPI format
in a YAML file residing on the Gitlab repository67 of the project. The API specification is still in its
development stage and will be expanded and refined during the coming implementation phase.
One of the expansions is adding an endpoint that allows users to generate a recovery key and
store it as a QR code. This process assists users in recovering their credentials from an out-of-
band backup of their wallet or other identities when they are unable to authenticate with the
ARCADIAN-IoT platform.
The proposed format for this new endpoint is the following:

67 https://gitlab.com/arcadian_iot/self-recovery/-/blob/develop/server/api/swagger/swagger.yaml

https://gitlab.com/arcadian_iot/self-recovery/-/blob/develop/server/api/swagger/swagger.yaml

D4.2: Vertical Planes - second version

© ARCADIAN-IoT Consortium 2021-2024 Page 123 of 142

Endpoint GET /api/recovery_key

Response {
 "key": "afc5ce76-898c-415f-ae8a-754c4602a2e6", // UUIDv4 placeholder, will be
updated with a more suitable mechanism
 "qr_code":
"iVBORw0KGgoAAAANSUhEUgAAASwAAAEsCAYAAAB5fY51AAAABGdBTU
EAALGPC/xhBQAAACBjSFJNAAB6JgAAgIQAAPoAAACA6AAAdTAAAOpgAA
A6mAAAF3CculE8AAAABmJLR0QAAAAAAAD5Q7t/AAAACXBIWXMAAABgAA
AAYADwa0LPAAAGjUlEQVR42u3dQW4qRxRAURNlB5a9//V54C2QQfSHCZbK
xavbnDMHmgZd1eDp9e1+v9/fAAL+mr4AgJ8SLCBDsIAMwQIyBAvIECwgQ7CA
DMECMgQLyBAsIEOwgAzBAjIEC8gQLCBDsIAMwQIyBAvIECwgQ7CADMEC
MgQLyBAsIEOwgAzBAjIEC8gQLCBDsIAMwQIyBAvIECwgQ7CADMECMgQLy
Ph7+gL+eH9/f/v+/p6+jG3u9/vW97/dbkufv/v1q06/f/6/z+GEBWQIFpAhWECGYA
EZggVkCBaQIVhAxjFzWI98fX29fXx8TF/Gf1qdw1mdA1o1Pae1e87r0fvvvr9X//8
+ixMWkCFYQIZgARmCBWQIFpAhWECGYAEZmTmsR+r7mFbff/X1V5+z2v3+q
+r/32dxwgIyBAvIECwgQ7CADMECMgQLyBAsIOMyc1h1p8/hrF7f7n1f03NgPIcT
FpAhWECGYAEZggVkCBaQIVhAhmABGeawDrF739Tq51/dq3//CicsIEOwgAzB
AjIEC8gQLCBDsIAMwQIyLjOHVZ+j2b2Pafq5fKfv+5pWv/5nccICMgQLyBAsIEO
wgAzBAjIEC8gQLCAjM4f1+fk5fQmjdu/Lmn7uYP31j7z6//e3OGEBGYIFZAgWkC
FYQIZgARmCBWQIFpBxu1vEk2Cf1P9zf16DExaQIVhAhmABGYIFZAgWkCFY
QIZgARnH7MPaPUezavc+qatf3/RzEVfvz/S+renXn8IJC8gQLCBDsIAMwQIyBAv
IECwgQ7CAjGPmsB6ZnhM5fQ5m+rmEu+ekdr++fn2rKnNaTlhAhmABGYIFZAg
WkCFYQIZgARmCBWRk5rCm56Cuvq9o976oVdPPHZz+fU///zyLExaQIVhAhm
ABGYIFZAgWkCFYQIZgARmZOazpOZLdcy7Tr5/ehzX93MTV71ef01r9/s/ihAVk
CBaQIVhAhmABGYIFZAgWkCFYQMYxc1inz/HsnnPZbfec11XmfHZ9v+nPP/3+/
pQTFpAhWECGYAEZggVkCBaQIVhAhmABGbf7IQMau/dNTc+xTO9LenXTc3r8
DicsIEOwgAzBAjIEC8gQLCBDsIAMwQIyjtmHNW16zmq30+fQdjv9/k/vW5u+Pz/l
hAVkCBaQIVhAhmABGYIFZAgWkCFYQEZmH9Yj03NC05+/yhzaXtPPdZz+f/8
WJywgQ7CADMECMgQLyBAsIEOwgAzBAjIy+7Cm9wU9snsO6fQ5r93PVVx9/f
Sc0vT/85Q5qlVOWECGYAEZggVkCBaQIVhAhmABGYIFZGTmsB65+j6n3dc/P
Sf0yPT9r89x1f/ffzhhARmCBWQIFpAhWECGYAEZggVkCBaQcZk5rGnTc0y792
3t/n7T+7pWr2/3HNPufWEVTlhAhmABGYIFZAgWkCFYQIZgARmCBWRcZg5r9
xzK9PtPf/4jp8/57N4X9urPXXwWJywgQ7CADMECMgQLyBAsIEOwgAzBAjJu90
MGLKbnjKb3Qe22ew6oPudT/31XT…” // base64 encoded jpg of QR code
}

It is important to note that the Self-recovery server offers the functionality to generate a recovery
key, but does not store it, it only returns the contents to the user.

4.1.4 Evaluation and results

A first prototype version of the Self-recovery component has been produced. This version is
mostly stand-alone but has already been integrated with Hardened Encryption. The backup and
recovery process, including encryption and decryption of backed up files, has been tested and
validated in a simulated environment with dummy data.

4.1.5 Future work

Development towards the second prototype version of Self-recovery will focus on completing
integration with the other ARCADIAN-IoT components. The server will be expanded with the
capability to connect and communicate through an AMQP system (RabbitMQ), facilitating inter-

D4.2: Vertical Planes - second version

© ARCADIAN-IoT Consortium 2021-2024 Page 124 of 142

component communication and integration, in the case of Self-recovery component, the primary
target for integration is the Reputation system.
The server rewrite into Golang will facilitate better integration with Hardened Encryption.
Currently, the client-side integration with HE is already done, but the server is not capable of
attesting the validity of the encryption of the stored backups. This capability will be achieved with
the inclusion of the GoFE68 library, that is already used by HE.
The use of CEPH will also be expanded to a properly clustered deployment, as the requirements
to demonstrate the functionality of using a networked storage system by the Self-recovery
component in the first prototype phase was only a single-node deployment.

68 https://github.com/fentec-project/gofe

D4.2: Vertical Planes - second version

© ARCADIAN-IoT Consortium 2021-2024 Page 125 of 142

4.2 Credentials recovery (ATOS)

4.2.1 Overview

4.2.1.1 Description

The recovery of credentials is the first and necessary step to trigger a data recovery mechanism.
The secure recovery of credentials is vital as there the trust between the device and the backend
services is established.

It is proposed to provide authenticated and authorised access to the backup server for data based
on the ARCADIAN-IoT ID Token described under the authentication component in section 2.4.
This relies upon eSIM Network Identity (see section 2.2), Self-Sovereign Identity (see sections
2.1 and 3.1) and Biometrics (see section 2.3) with the latter only supported for persons. Therefore,
it is these credentials that are under the scope of being able to be recovered.

To avoid manual recovery of the credentials, various techniques will be evaluated and the most
suitable one will be implemented.

4.2.1.2 Requirements

A recall of the requirements defined in ARCADIAN-IoT D2.4 [1] with further supplemental
information is detailed here.

• Requirement 7.2.1 – Credentials recovery mechanism
o To recover lost, compromised or corrupted credentials for an SSI Agent or Wallet.

Analyse also the recovery of network credentials from network operator for
authenticating devices/persons in third parties.

4.2.1.3 Objectives and KPIs

The primary objective is to provide the secure recovery of credentials as the first and necessary
step to establish the trust before the data recovery mechanism is triggered.

KPI scope

Support Credential Recovery operations after security/privacy incidents for persons and IoT

Devices

Measurable Indicator

Credential Recovery mechanisms supported
Benchmarking (OPTIONAL)

-

Target value (M30) Current value (M20)

1

0

KPI scope

Availability of self-recovery and decentralized identity management schemes.
Measurable Indicator

Support recovery of Decentralized Identifiers and Verifiable Credentials

Target value (M30) Current value (M20)

Recovery supported

Recovery not supported

D4.2: Vertical Planes - second version

© ARCADIAN-IoT Consortium 2021-2024 Page 126 of 142

4.2.2 Technology research

4.2.2.1 Background

ATOS do not have any existing assets for credential back-up.

Analysis of the W3C Universal Wallet specification provides for standard interfaces used in a
wallet´s credential backup and restoration with the use of import and export functions [45]. It
also states that if “Encrypted Data Vault” is used then it is not needed to support those
functions. However, local encryption at the client side could be the more secure option so that
no unencrypted credentials are shared outside of the wallet whatsoever.

In the following sub-sections, we outline the approach to be followed in ARCADIAN-IoT to
recover access credentials for gaining access to the Self-Recovery component to manage the
backups.

Credential recovery considers the scenario where a mobile or IoT device´s data (including
credential SSI Wallet or from an IoT device) was somehow corrupted or lost and the user or
device is attempting a recovery of its credentials and later its data. Here, it is considered the
recovery of the credentials in an automatic way before the data back-up can securely accessed.
Note that if the credentials were otherwise compromised it would be needed to re-issue the
credentials themselves as is described in sections 2.1 and 3.1.

The credentials that are backed up in Self-recovery should make use of Hardened Encryption
cipher techniques to encrypt the back-up data. Ideally this is done at source but depending on
the device capabilities may need a proxy solution.

Support for automatic recovery of credentials for mobile and IoT devices are analysed in the
following section.

4.2.2.2 Credentials Recovery in ARCADIAN-IoT

4.2.2.2.1 Person Credentials Recovery

The different person identity credentials supported in ARCADIAN-IoT and their possible
recovery mechanisms are analysed below.

Credentials Recovery for a SSI Wallet on a mobile device
For recovery of a user´s credentials, for a user´s SSI Wallet the following mechanisms can be
considered:

• during account registration in Self-recovery, it can be setup a quorum of trusted entities
associated emails to be issued with different portions of a recovery key to be used to
request a restoration of the SSI Wallet including its Verifiable Credentials.

• during account registration in Self-recovery a user can be issued with a QR Code
containing a recovery key to be used to request a restoration of the SSI Wallet including
its Verifiable Credentials.

The SSI Wallet backup is encrypted, and the restoration process described above provides
access to the key to decrypt it and restore the wallet. The encryption mechanisms that will be
supported will be provided by Hardened Encryption component.

Secure symmetric encryption such as AES 256 is one way where the wallet could be encrypted
and exported to a recovery server where it would be stored with a specific recovery key.

D4.2: Vertical Planes - second version

© ARCADIAN-IoT Consortium 2021-2024 Page 127 of 142

Credentials Recovery for eSIM on a mobile/personal device
The root cause that could trigger the eSIM credentials recovery is a device (IoT device or personal
device) being stolen or lost.
If this device is recovered (its owner has it again without being irreparably shattered), the eSIM
credentials continue there, in the secure element. The threat surface related with the access to
the eSIM credentials and compromising them is very narrow and has very low probability. SIMs
are well-accepted as secure to store and manage subscriber identity credentials for decades.
Furthermore, in fact, the use of eSIM instead of the previous SIM factor further narrows the threat
surface, because the eUICC (the hardware that has the information – eSIM profiles) is soldered
to the device board, being much harder for, e.g., removing it for cloning when compared to the
previous plastic cards. Therefore, we will not question the state of the art of the SIM/eSIM secure
element (UICC/eUICC) as being secure, and just consider the case that the device is not
recovered by its owner.
In this case, a new device will have a new eSIM profile (new subscriber credentials) and the
credentials recovery will consist of associating these new credentials with the previous
ARCADIAN-IoT ID. This process will be similar to the onboarding process in what concerns the
eSIM credentials association with an ARCADIAN-IoT ID.

Biometric Recovery
The biometric credential is the user´s face which is not treated as a recoverable credential, as it
is a physical trait of the person.

4.2.2.2.2 IoT Device Credential Recovery

The different IoT Device identity credentials supported in ARCADIAN-IoT and their possible
recovery mechanisms are analysed below.

Self-Recovery Account Credentials Recovery for an SSI Agent on IoT Device

Once an IoT Device is registered with an ARCADIAN-IoT identity, the controller (Service Provider
application) of the IoT Device could request a recovery key from Self-recovery and use this in a
request to the IoT Device to perform Credential Recovery. The IoT Device would then contact
Self-Recovery with the recovery key to recover its previous credentials.

In the case of IoT devices that lost their DID or private key was compromised, the DID DOC would
have to be first updated / recovered (as described in section 2.1) with the IoT device updating its
associated private key. However, the IoT Device is not seen to be issued with so many different
credentials as a person would be to their wallet from many different organisations, so it should be
considered if the effort here is worthwhile as it could be simpler to reboot the device swiping their
one or two credentials and re-issuing them.

Credentials Recovery for eSIM on a IoT device
The credentials recovery for the cellular network subscriber, being it a IoT device or personal
device should be the same, and only apply when devices’ hardware is not recovered. Upon a
recovery process, a new eSIM profile is provisioned to the substitute device and the new
credentials are associated with the ARCADIAN-IoT entity being recovered.

4.2.2.3 Research findings and achievements

The initial research findings propose the import and export of encrypted back-ups of the wallet
credentials based on a recovery key for a previously registered entity which can be either
obtained from a quorum of trusted entities or a QR Code kept in a safe place.

D4.2: Vertical Planes - second version

© ARCADIAN-IoT Consortium 2021-2024 Page 128 of 142

The recovery of IoT Devices credentials can be based also on a recovery key issued for
registered IoT Devices, with the recovery key being kept by a controller of the IoT Device, which
would be responsible for sharing the recovery key when needed.

4.2.2.4 Produced resources

There are no existing resources supporting Credentials Recovery. Person credential recovery
implementation and integration is planned first, although not in time for the first prototype P1. IoT
Device credential recovery design, implementation and integration is also planned for the final
prototype P2.

4.2.3 Design specification

The design of person credential recovery is described in this deliverable.

4.2.3.1 Sub-use cases

4.2.3.1.1 Recovery of a person´s SSI Credentials

The use case figure below captures the 3 main sub-use cases for supporting the recovery of
person credentials from a user´s SSI wallet.

Figure 46 - Recovery of SSI Wallet Credentials Use Case

D4.2: Vertical Planes - second version

© ARCADIAN-IoT Consortium 2021-2024 Page 129 of 142

4.2.3.2 Logical architecture view

4.2.3.2.1 SSI Credential Recovery

Figure 47 - SSI Credential Recovery Logical Architecture

4.2.3.3 Interface description

The mobile SSI Wallet will support an out-of-band interface by scanning the QR Code to obtain
the recovery key.

To store and later retrieve the credential back-up, the wallet will call the Self-recovery
component as described in section 4.1.

4.2.3.4 Technical solution

4.2.3.4.1 API specification

There is no API Specification on the SSI Wallet for Credential Recovery as the QR Code is
canned manually in an out-of-band process.

The store / retrieve credential back-up calls are provided by the Self-recovery API specification
(see section 4.1.3.3).

4.2.3.4.2 Frontend design

The SSI IdP frontend will provide an interface to the user to request to Self-recovery to register
for the Credential Recovery service and display the QR Code retrieved from Self-recovery. Note
the user needs to be registered in ARCADIAN-IoT before they can register for the framework´s
Credential Recovery service.

4.2.3.4.3 Ledger uSelf mobile SSI wallet

The Ledger uSelf mobile SSI wallet will support:

• the symmetric encryption of the SSI credentials using the Hardened Encryption libraries.

D4.2: Vertical Planes - second version

© ARCADIAN-IoT Consortium 2021-2024 Page 130 of 142

• the storing of encrypted credential backups to Self-recovery.

• the scanning of the QR Code to retrieve the recovery key to retrieve the backup from
Self-recovery.

4.2.4 Evaluation and results

The low-level design and implementation is ongoing with no results currently available.

4.2.5 Future work

The next step is to finalize the design and start implementation for client recovery of person
credentials and integrate it with the Self-recovery component. Additionally, for IoT Device
Credential Recovery it is needed to fully agree the design specification for its implementation in
the final prototype P2.

D4.2: Vertical Planes - second version

© ARCADIAN-IoT Consortium 2021-2024 Page 131 of 142

5 CONCLUSIONS

This report has aimed at presenting the up-to-date research status for ARCADIAN-IoT’s Vertical
Planes – Identity, Trust and Recovery planes, covering both background, research and
specifications, implementation and preliminary evaluation (or associated plans). Moreover, a list
of revised (e.g. more aligned with the research goals) KPIs for each component have been
provided. Most of these KPIs depend on actual validation in the domain pilots, which is yet to take
place, but some of the KPIs could potentially be already interpreted as having been achieved, as
their implementation is compliant with the target environments (e.g. operating system), only
lacking the validation to be performed in the next couple of months.

A significant part of the research and specification activities have been completed, with a few
notable exceptions (e.g. support of remote attestation with cryptochip as secure element or
support of DID/SSI in industrial constrained devices). As regards the implementation /
development, activities for most components are ongoing with the focus on diverse threads such
as the registration of the different types of entities (persons, devices and services) or compatibility
with the device heterogeneity (e.g. drone, smartphone, industrial gateway).

An overview of the ARCADIAN-IoT vertical planes research activities now follows. Within the
Identity Plane, the different options for supporting Decentralized Identifiers are either already
under implementation or require further research, in order to cope with the different use cases’
needs. The eSIM has been target of enhancements for enabling network-based authentication of
IoT persons and devices and next steps will focus its validation in different IoT services (and
associated devices), while Biometrics is targeting more accurate and faster face verification of
persons under challenging conditions. Moreover, a new Multi-factor authentication scheme for
orchestrating the aforementioned authentication factors has been specified and partially
implemented for enabling Authentication of persons and devices when accessing ARCADIAN-
IoT-compliant IoT services.

The Trust Plane, paramount to enable a Chain of Trust (CoT) between the different entities (i.e.
persons, devices, services), has been partially implemented, with focus on person-devices,
person-services and device-services interactions. Verifiable Credentials are being considered
for enabling trusted entities’ identification, and are under final interwork specification for issuing,
registration and authentication of IoT devices. Reputation System models entities’
trustworthiness based on the interaction events involving the different entities, with next steps
focusing effective determination of reputation scores based on the events consumed from
operating IoT services and other ARCADIAN-IoT components. Remote Attestation capability for
collecting hardened evidence for assessing IoT devices and services integrity has been partially
implemented, with next steps including refining its role in determining entities reputation.
Authorization, aimed at enforcing trust-based policies in the mobile network core and informing
devices’ secure element of the associated device trustworthiness is on track to achieve the target
objectives, and, among others, will focus the incorporation of more granular trust-based policies
and validation in the target IoT domains.

Finally, as for the Recovery Plane, a first stand-alone prototype of Self-recovery has been tested
and validated for backup and recovery of dummy data, including encryption and decryption of
backed up files, and next steps will focus stronger integration with ARCADIAN-IoT (e.g.
Reputation System). The Credentials Recovery, necessary for establishing the trust between a
device and the IoT service, is aiming at the recovery of credentials for the different ARCADIAN-
IoT authentication factors, and will pursue the support of client recovery of person credentials and
integration with Self-recovery, and the clarification of how to support IoT device credential
recovery.

The outcomes of this deliverable are an integral part of the first pilot integration of ARCADIAN-
IoT framework (P1), delivered in the scope of WP5. The final deliverable (D4.3) will provide a
report on the final prototype implementation of the Vertical Plane components and their
evaluation.

D4.2: Vertical Planes - second version

© ARCADIAN-IoT Consortium 2021-2024 Page 132 of 142

APPENDIXES

Appendix A – Analysis of events in Domain A for Reputation System

ID Event Use Case
as per
D2.2 [2]
Descripti
on

Reputati
on
Ratings
Logic
Initially:
- Persons
reputatio
n NULL
-
Services
reputatio
n NULL
- Devices
reputatio
n NULL

PERSON
Reputati

on
Ratings
Values

(min 0.0,
max 1.0)

Service
Reputati

on
Ratings
Values

(min 0.0,
max 1.0)

Device
Reputati

on
Ratings
Values

(min 0.0,
max 1.0)

Device 2
(Drone/oth

er)
Reputation

E1
.

Person
Registrati

on

A1–
Person
registers
in the
DGA
service
and install
mobile
APP,

User
register in
service

+ n/a

D4.2: Vertical Planes - second version

© ARCADIAN-IoT Consortium 2021-2024 Page 133 of 142

Appendix B – Analysis of events in Domain B for Reputation System

ID Event

Use Case
as per

D2.2 [2]
Descriptio

n

Reputation
Ratings
Logic

Initially:
- Persons
reputation

NULL
- Services
reputation

NULL
- Devices
reputation

NULL

Device
Reputatio
n Ratings

Values
(min 0.0,
max 1.0)

Service/Middlew
are Reputation
Ratings Values
(min 0.0, max

1.0)

Person
Reputatio

n (Grid
Manager)
Ratings
Values

(min 0.0,
max 1.0)

A1

New user
(human
being)

registration

GRID

Persons
reputation
NUL; (+) or
maintain at

existing level

N/A N/A 0,1

D4.2: Vertical Planes - second version

© ARCADIAN-IoT Consortium 2021-2024 Page 134 of 142

Appendix C – Analysis of events in Domain C for Reputation System

ID Event Use
Case as
per D2.2
[2]
Descript
ion

Reputatio
n Ratings
Logic
Initially:
- Persons
reputatio
n NULL
-
Services
reputatio
n NULL
- Devices
reputatio
n NULL

Medical
Person
Reputat

ion
Ratings
Values

(min
0.0,
max
1.0)

Patient
Person
Reputat

ion
Ratings
Values
(min
0.0,
max
1.0)

Service
Reputat

ion
Ratings
Values
(min
0.0,
max
1.0)

Device
Reputat

ion
Ratings
Values
(min
0.0,
max
1.0)

MIoT
Hospita

l
platfor

m
Reputat

ion
Rating
values
(min:
0.0,
max
1.0)

E
1.

MIoT kit
delivery -
Patient
registratio
n and
authentic
ation

C1 User
register in
service

 + +

Patient
Authentic
ates

 + + +

Patient
Fails
Authentic
ation

 - -

D4.2: Vertical Planes - second version

© ARCADIAN-IoT Consortium 2021-2024 Page 135 of 142

Appendix D – Policy Manager User Manual

Policy Management Dashboard

Default policy

Default policy is a policy which specifies the default behaviour of the system when no other
policies are applied. There can only be one default policy.

In order to update the default policy simply select a different value on the drop-down menu and
click submit.

Figure 48 - Screen with default and other policies

Updating policies

In order to update a policy follow the steps:
1. Select a field on the table
2. Change the value
3. Click off the field or press “Enter”

D4.2: Vertical Planes - second version

© ARCADIAN-IoT Consortium 2021-2024 Page 136 of 142

Figure 49 – Configurable policies fields

Deleting policies\

In order to delete a policy follow the steps:
1. Scroll to the desired policy
2. Click on the “Delete” button on the last field of the row

Adding new policies

In order to add a new policy to the database follow
the steps:

1. Click on the “New Policy” button
2. Fill the fields
3. Click on the “Add Policy” button

Policy API

Policy fields

Backend fields

• Id
o Policy ID

• createdBy
o Policy creator’s ID

• timeUpdated
o Timestamp of the last changes to the policy

Policy definition fields

• Active (mandatory)
o Boolean representing whether the policy is active or not

• reputationRange (mandatory)
o Reputation range at which the policy is active
o Range [min, max]

• Description (optional)

D4.2: Vertical Planes - second version

© ARCADIAN-IoT Consortium 2021-2024 Page 137 of 142

o Optional text description of the policy
• Action (mandatory)

o Policy effect (allow or deny)
• SrcIDs (optional)

o Array with IDs of the domain targeted by the policy
o Can include: AIoT identifiers,

• DstIDs (optional according to policy)
o Array with IDs of the destination domain
o Can include: AIoT identifiers, IP addresses, FQDN

Endpoints

GET /policies

POST /policy

PATCH /policy/{id}

DELETE /policy/{id}

GET /default_policy

PUT /default_policy

D4.2: Vertical Planes - second version

© ARCADIAN-IoT Consortium 2021-2024 Page 138 of 142

Appendix E – DID METHODS

 Table 13 DID Method Table [8]

DID Method DLT / Network Name

did:3 Ceramic Network 3ID DID Method

did:abt ABT Network ABT DID Method

did:aergo Aergo Aergo DID Method

did:ala Alastria Alastria DID Method

did:amo AMO blockchain mainnet AMO DID Method

did:bba Ardor BBA DID Method

did:bid bif BIF DID Method

did:bnb Binance Smart Chain Binance DID Method

did:bryk bryk bryk DID Method

did:btcr Bitcoin BTCR DID Method

did:ccp Quorum Cloud DID Method

did:celo Celo Celo DID Method

did:com commercio.network Commercio.network DID Method

did:corda Corda Corda DID method

did:did Decentralized Identifiers DID Identity DID Method

did:dns Domain Name System (DNS) DNS DID Method

did:dock Dock Dock DID Method

did:dom Ethereum

did:dual Ethereum Dual DID Method

did:echo Echo Echo DID Method

did:elastos Elastos ID Sidechain Elastos DID Method

did:elem Element DID ELEM DID Method

did:emtrust Hyperledger Fabric Emtrust DID Method

did:ens Ethereum ENS DID Method

did:eosio EOSIO EOSIO DID Method

did:erc725 Ethereum erc725 DID Method

did:etho Ethereum ETHO DID Method

did:ethr Ethereum ETHR DID Method

did:evan evan.network evan.network DID Method

did:example DID Specification DID Specification

did:factom Factom Factom DID Method

did:future Netease Chain Future DID Method

did:gatc Ethereum, Hyperledger
Fabric, Hyperledger Besu,
Alastria

Gataca DID Method

did:grg GrgChain GrgChain DID Method

did:hedera Hedera Hashgraph Hedera Hashgraph DID Method

did:holo Holochain Holochain DID Method

did:hpass Hyperledger Fabric hpass DID Method

did:icon ICON ICON DID Method

did:infra InfraBlockchain Infra DID Method

did:io IoTeX IoTeX DID Method

did:ion Bitcoin ION DID Method

did:iota IOTA IOTA DID Method

did:ipid IPFS IPID DID method

did:is Blockcore Blockcore DID Method

D4.2: Vertical Planes - second version

© ARCADIAN-IoT Consortium 2021-2024 Page 139 of 142

did:iw InfoWallet InfoWallet DID Method

did:jlinc: JLINC Protocol JLINC Protocol DID Method

did:jnctn Jnctn Network JNCTN DID Method

did:jolo Ethereum Jolocom DID Method

did:keri Ledger agnostic KERI DID Method

did:key Ledger independent DID
method based on public/private
key pairs

DID key method

did:kilt KILT Blockchain KILT DID Method

did:klay Klaytn Klaytn DID Method

did:kr Korea Mobile Identity System Korea Mobile Identity System DID
Method

did:lac LACChain Network LAC DID Method

did:life RChain lifeID DID Method

did:lit: LEDGIS LIT DID Method

did:meme Ledger agnostic Meme DID Method

did:meta Metadium Metadium DID Method

did:moac MOAC MOAC DID Method

did:monid Ethereum MONiD DID Method

did:morpheus Hydra Morpheus DID Method

did:mydata iGrant.io Data Agreement DID Method

did:near NEAR NEAR DID Method

did:nft Ceramic Network NFT DID Method

did:ockam Ockam Ockam DID Method

did:omn OmniOne OmniOne DID Method

did:onion Ledger agnostic Onion DID Method

did:ont Ontology Ontology DID Method

did:op Ocean Protocol Ocean Protocol DID Method

did:orb Ledger agnostic Orb DID Method

did:panacea Panacea Panacea DID Method

did:peer peer peer DID Method

did:pistis Ethereum Pistis DID Method

did:pkh Ledger-independent
generative DID method based
on CAIP-10 keypair expressions

did:pkh method

did:pml PML Chain PML DID Method

did:polygon Polygon (Previously MATIC) Polygon DID Method

did:ptn PalletOne PalletOne DID Method

did:safe Gnosis Safe SAFE DID Method

did:san SAN Cloudchain SAN DID Method

did:schema Multiple storage networks,
currently public IPFS and
evan.network IPFS

Schema Registry DID Method

did:selfkey Ethereum SelfKey DID Method

did:sideos Ledger agnostic sideos DID Method

did:signor Ethereum, Hedera
Hashgraph, Quorum,
Hyperledger Besu

Signor DID Method

did:sirius ProximaX Sirius Chain ProximaX SiriusID DID Method

did:sol Solana SOL DID Method

did:sov Sovrin Sovrin DID Method

did:ssb Secure Scuttlebutt SSB DID Method

D4.2: Vertical Planes - second version

© ARCADIAN-IoT Consortium 2021-2024 Page 140 of 142

did:ssw Initial Network SSW DID Method

did:stack Bitcoin Blockstack DID Method

did:tangle IOTA Tangle TangleID DID Method

did:tls Ethereum TLS DID Method

did:trust TrustChain Trust DID Method

did:trustbloc Hyperledger Fabric TrustBloc DID Method

did:trx TRON TRON DID Method

did:ttm TMChain TM DID Method

did:twit Twit Twit DID Method

did:tyron Zilliqa tyronZIL DID-Method

did:tys DID Specification TYS DID Method

did:tz: Tezos Tezos DID Method

did:unik uns.network UNIK DID Method

did:unisot Bitcoin SV UNISOT DID Method

did:uns uns.network UNS DID Method

did:uport Ethereum

did:v1 Veres One Veres One DID Method

did:vaa bif VAA Method

did:vaultie Ethereum Vaultie DID Method

did:vid VP VP DID Method

did:vivid NEO2, NEO3, Zilliqa Vivid DID Method

did:vvo Vivvo Vivvo DID Method

did:web Web Web DID Method

did:wlk Weelink Network Weelink DID Method

did:work Hyperledger Fabric Workday DID Method

D4.2: Vertical Planes - second version

© ARCADIAN-IoT Consortium 2021-2024 Page 141 of 142

REFERENCES

[1] ARCADIAN-IoT, “D2.4 ARCADIAN-IoT framework requirements”, 2021

[2] ARCADIAN-IoT, “D2.2 - Use case specification”, 2021

[3] DIF, “Decentralized Identifiers (DIDs) v1.0,» 03 Aug 2021.”, https://www.w3.org/TR/did-core/, 2022

[4] DIF, “Sidetree v1.0.0”, https://identity.foundation/sidetree/spec/, 2022

[5] ARCADIAN-IoT, “D3.1 - Horizontal Planes - first version”, 2022

[6] W3C, “BBS+ Signatures 2020”, https://w3c-ccg.github.io/ldp-bbs2020/, 2022

[7] W3C, “Verifiable Credentials Data Model v1.1”, https://www.w3.org/TR/vc-data-model/, 2022

[8] W3C, “DID Registries”, https://www.w3.org/TR/did-spec-registries/, 2022

[9] https://github.com/decentralized-identity/element/blob/master/docs/did-method-spec/spec.md, 2022

[10] https://github.com/w3c-ccg/did-method-web, 2022

[11] https://github.com/decentralized-identity/ion-did-method, 2022

[12] https://ec.europa.eu/digital-building-blocks/wikis/display/EBSIDOC/DID+Registry+API, 2022

[13] “IOTA DID Method specification”, https://wiki.iota.org/identity.rs/specs/did/iota_did_method_spec,
2022

[14] https://ec.europa.eu/digital-building-blocks/wikis/display/EBSIDOC/DID+Authentication+Library,
2022

[15] “Sidetree Core Protocol and DID Method Drivers“, https://github.com/transmute-industries, 2022

[16] Transmute, “Sidetree Protocol Specification”, https://github.com/transmute-industries/sidetree-
core/blob/master/docs/protocol.md

[17] https://w3c-ccg.github.io/did-method-key/, 2022

[18] https://identity.foundation/peer-did-method-spec/index.html, 2022

[19] https://ec.europa.eu/digital-building-blocks/wikis/display/EBSI/Early+Adopters+Programme, 2022

[20] https://joinup.ec.europa.eu/collection/ssi-eidas-bridge/about, 2022

[21] Evernym, https://www.evernym.com/blog/bbs-verifiable-credentials/, 2022

[22] DIF, https://identity.foundation/didcomm-messaging/spec/, 2022

[23] https://github.com/uport-project/veramo, 2022

[24] https://veres.one/, 2022

[25] https://www.hyperledger.org/use/hyperledger-indy, 2022

[26] https://github.com/hyperledger/aries, 2022

https://www.w3.org/TR/did-core/
https://identity.foundation/sidetree/spec/
https://w3c-ccg.github.io/ldp-bbs2020/
https://www.w3.org/TR/vc-data-model/
https://www.w3.org/TR/did-spec-registries/
https://github.com/decentralized-identity/element/blob/master/docs/did-method-spec/spec.md
https://github.com/w3c-ccg/did-method-web
https://github.com/decentralized-identity/ion-did-method
https://ec.europa.eu/digital-building-blocks/wikis/display/EBSIDOC/DID+Registry+API
https://wiki.iota.org/identity.rs/specs/did/iota_did_method_spec
https://ec.europa.eu/digital-building-blocks/wikis/display/EBSIDOC/DID+Authentication+Library
https://github.com/transmute-industries
https://github.com/transmute-industries/sidetree-core/blob/master/docs/protocol.md
https://github.com/transmute-industries/sidetree-core/blob/master/docs/protocol.md
https://w3c-ccg.github.io/did-method-key/
https://identity.foundation/peer-did-method-spec/index.html
https://ec.europa.eu/digital-building-blocks/wikis/display/EBSI/Early+Adopters+Programme
https://joinup.ec.europa.eu/collection/ssi-eidas-bridge/about
https://www.evernym.com/blog/bbs-verifiable-credentials/
https://identity.foundation/didcomm-messaging/spec/
https://github.com/uport-project/veramo
https://veres.one/
https://www.hyperledger.org/use/hyperledger-indy
https://github.com/hyperledger/aries

D4.2: Vertical Planes - second version

© ARCADIAN-IoT Consortium 2021-2024 Page 142 of 142

[27] https://jolocom.io/, 2022

[28] https://github.com/mattrglobal, 2022

[29] https://github.com/spruceid/ssi, 2022

[30] https://github.com/iotaledger/identity.rs/, 2022

[31] https://github.com/alastria/alastria-identity, 2022

[32] https://github.com/decentralized-identity/interoperability/blob/master/agenda2021.md, 2022

[33] https://ec.europa.eu/digital-building-
blocks/wikis/display/EBSIDOC/EBSI+Verifiable+Credentials+Playbook, 2022

[34] https://openid.net/specs/openid-connect-4-verifiable-presentations-1_0.html, 2022

[35] https://openid.net/specs/openid-connect-self-issued-v2-1_0.html, 2022

[36] https://datatracker.ietf.org/doc/html/draft-looker-jwm-01, 2022

[37] https://w3c.github.io/vc-test-suite/implementations/, 2022

[38] https://github.com/transmute-industries/sidetree.js, 2022

[39] https://www.ietf.org/archive/id/draft-cavage-http-signatures-06.txt, 2022

[40] W3C “Decentralized Identifiers (DIDs)” https://w3c-ccg.github.io/did-spec/

[41] W3C Peer DID Method specification, https://identity.foundation/peer-did-method-spec/index.html ,
2022

[42] https://github.com/hyperledger/aries-framework-go, 2022

[43] https://github.com/hyperledger/aries-framework-go/graphs/contributors, 2022

[44] https://ec.europa.eu/info/strategy/priorities-2019-2024/europe-fit-digital-age/european-digital-
identity_en, 2022

[45] https://w3c-ccg.github.io/universal-wallet-interop-spec/#import, 2022

[46] ARCADIAN-IoT, “D4.1 - Vertical Planes”, 2022

https://jolocom.io/
https://github.com/mattrglobal
https://github.com/spruceid/ssi
https://github.com/iotaledger/identity.rs/
https://github.com/alastria/alastria-identity
https://github.com/decentralized-identity/interoperability/blob/master/agenda2021.md
https://ec.europa.eu/digital-building-blocks/wikis/display/EBSIDOC/EBSI+Verifiable+Credentials+Playbook
https://ec.europa.eu/digital-building-blocks/wikis/display/EBSIDOC/EBSI+Verifiable+Credentials+Playbook
https://openid.net/specs/openid-connect-4-verifiable-presentations-1_0.html
https://openid.net/specs/openid-connect-self-issued-v2-1_0.html
https://datatracker.ietf.org/doc/html/draft-looker-jwm-01
https://w3c.github.io/vc-test-suite/implementations/
https://github.com/transmute-industries/sidetree.js
https://www.ietf.org/archive/id/draft-cavage-http-signatures-06.txt
https://w3c-ccg.github.io/did-spec/
https://identity.foundation/peer-did-method-spec/index.html
https://github.com/hyperledger/aries-framework-go
https://github.com/hyperledger/aries-framework-go/graphs/contributors
https://ec.europa.eu/info/strategy/priorities-2019-2024/europe-fit-digital-age/european-digital-identity_en
https://ec.europa.eu/info/strategy/priorities-2019-2024/europe-fit-digital-age/european-digital-identity_en
https://w3c-ccg.github.io/universal-wallet-interop-spec/#import

