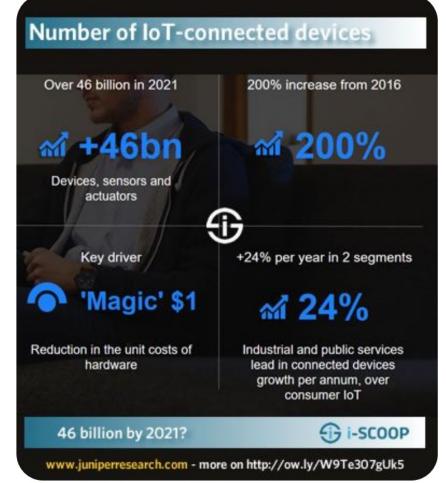


Threat Intelligence for 5G IoT

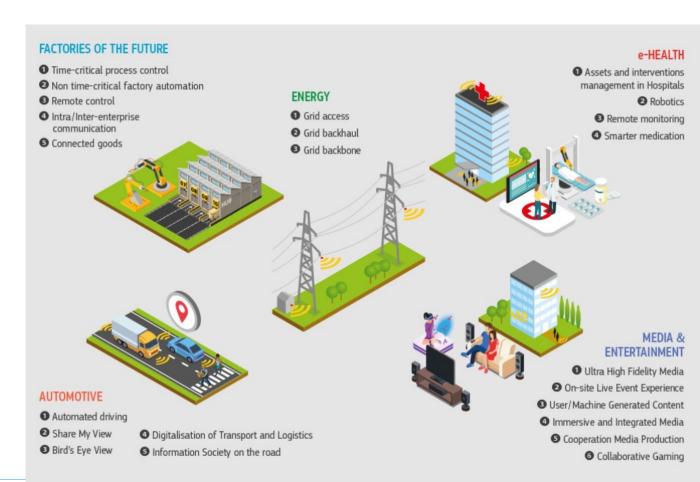
Prof. Thanh van Do, Telenor Research IoT Week, Dublin 20-23 June 2022



Introduction

• As 5G strives to accomplishing its mission of supporting a multitude of IoT verticals it will be exposed to a big threat:

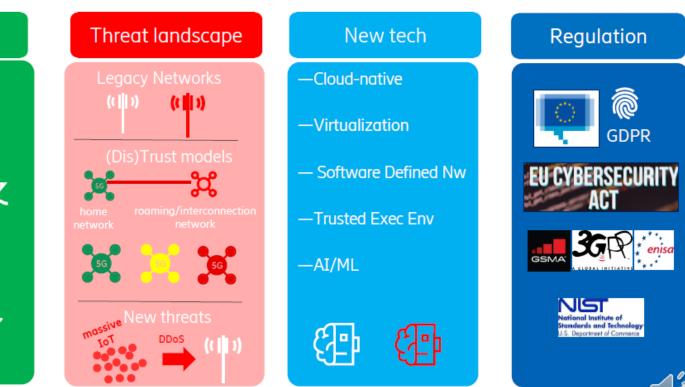
Flooding/DDOS attacks by IoT devices that could lead to network breakdown and total service disruption


- Unfortunately, there is currently no adequate defense measure to protect the mobile network against Flooding attacks
- We present here a Flooding prevention solution proposed by Telenor, Wolffia and OsloMet experimented at the 5G4IoT Lab at OsloMet in the scope of the H2020 Concordia Project
- The solution will be able to detect Flooding attacks even before they are launched by using Threat Intelligence with Machine Learning

Why preventing Flooding Attacks

- The 5G network is a critical infrastructure for a variety of IoT verticals:
 - Emergency network and services
 - Smart city
 - eHealth
 - Intelligent transport
 - Defence/Army network
 - etc.
- A disruption in the 5G network will have severe consequences for the society

Is Flooding a real threat?


 Not yet happening but will happen if nothing is done

A wider perspective on 5G security

SINTEF ONTINU CONFERENCE ON ICT: 56 FOR INDUSTRY & SOCIETY 05L0, 5 - 6 NOVEMBER 2020

What drives 5G Security?

2020-10-22 | A wider perspective on 5G security | Open | Page 4 of 12

3

uis Barriaa. Ericsson

Huge threat from billion IoT devices

- Indeed, if billion of IoT devices get «mad» and bombard with messages the 5G network may collapse
- IoT devices are quite exposed
 - Could be tampered or hijacked without the knowledge of the owner
 - Simple and not capable of strong encryption and authentication
 - Unsecure communication
- Also, it is uncertain «who»/ «what» is behind an IoT device
 - It could be a simple primitive device
 - It could be a «monster» super computer
- The biggest challenge is that once detected a Flooding attack is almost unstoppable and the network may have already collapsed

A simple but genius solution

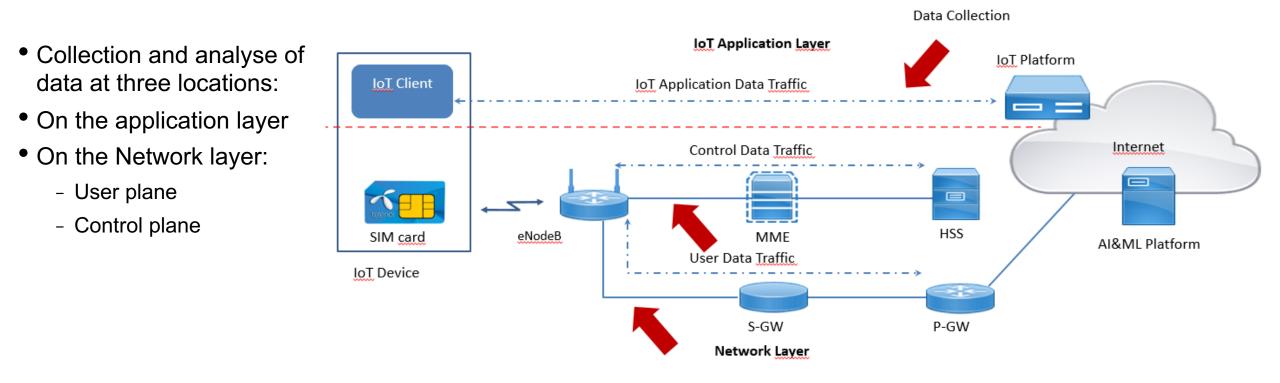
- If it is too late to wait until a Flooding attack is launched
- Then let's detect and block it before
- The big question is: HOW?
- OUR SOLUTION is quite simple and assuming the following:
 - IoT devices used in a Flooding attack are compromised prior to an attack
 - They should have abnormal behaviour and activities
 - Communicating with allien parties
 - Have more activities than normal
 - On a fixed IP network it is not possible for the IoT platform and IoT owner to monitor and detect such anomalies
 - Because infected devices do not communicate with the IoT platform
 - On mobile networks, by collecting and analyzing data on the network layer both user and control data abnormal behaviours can be captured

Flooding vs DDoS attacks

• DDoS (Distributed Denial-of-Service)

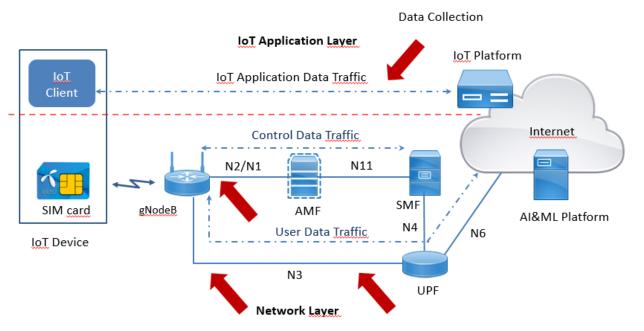
- Attempt to make it impossible for a service to be delivered to its intended users.
- By preventing access to virtually anything: servers, devices, services, networks, applications, and even specific transactions within applications
- Targeting a specific service provider or web site
- Detection can be done by analysis of traffic destined to a specific destination
- Flooding
 - Attempt to tear down the entire network blocking every service on the network
 - Send a massive amount of traffic onto a specific network segment with the goal of creating so much network congestion that legitimate traffic cannot reach the target server or service.
 - This type of attack is not specific to any Web site as the traffic sent onto the network could really be of any type
 - Detection

Flooding attacks on mobile networks

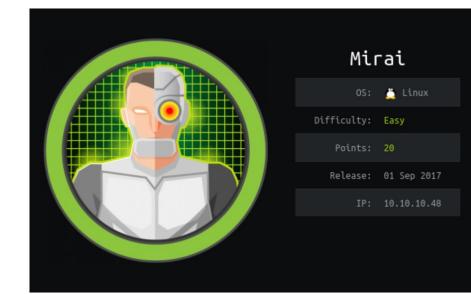


- Aims at taking down the entire mobile network:
 - No phone call
 - No SMS
 - No emergency call

- Blocking Radio Access Network (RAN)
- Blocking Control Plane
- Blocking Data Plane


The Detection of Flooding Attacks solution

The 5G4IoT Machine Learning Platform


- Making use of Machine Learning
 - Semi-supervise
 - Both labelled and unlabelled data
 - Benign (normal) data are used to build a profile of the normal situation
 - Any deviation is interpreted as an anomaly that will be analysed by security experts
- A big challenge: The lack of malicious data
 - Solutions:
 - Simulated attacks with purposely infected devices
 - Simulated Mobile phones
 - Raspberry PI infected with Mirai
 - Generation of traffic based collected traffic

Achievements

- A 5G IoT testbed is established at the 5G4IoT lab:
 - A small lab 5G network is built with:
 - Commodity computers combined with OsloMet cloud
 - Using USRP (Universal Software defined Radio Peripheral)
 - Running OpenAirInterface and Open5GS
 - A variety of devices:
 - Mobile phones
 - Digital locks
 - Cameras
 - Raspberry Pis
 - Sensors
 - A ML platform based on commodity computers and open source software
- Profiles for normal situation have been built
- Next step: Introduce anomalies:
 - Particular app on mobile phones
 - Simulated infected Raspberry PI

Conclusion

- IoT will play a central role in the digitalization of the society
 - More and more devices and sensors will be used
 - More security will be needed to ensure that these IoT devices are functioning as intended
- 5G will be the dominant connectivity and communication infrastructure which has the critical mission to support and provide adequate security to IoT applications and devices
- With the rise of AI/ML it is natural that AI/ML should be used to provide improved security for IoT but the main challenge is the data sets:
 - What are the relevant data?
 - Where/How to collect them?
 - How to store and consume them?
- Another challenge is how to share the lessons learnt between mobile networks:
 - Due to differences in size, distribution, number of users, configuration, etc.
- We will continue researching to bring clarity to these issues

Thank you

