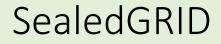
Scalable, trusted, and interoperable platform for secured smart grid

Pilot Progress & Results

Prof. Christos Xenakis University of Piraeus Research Center


IoT Week, June 2022

European Union funding for Research & Innovation

Co-funded by the Horizon H2020 Framework Programme of the European Union under grant agreement no 777996.

SealedGRID's MISSION:

Develop and implement a Scalable, Trusted,

and Interoperable platform for a Secured

Smart Grid

The project

Horizon 2020 European Union funding for Research & Innovation

Co-funded by the Horizon H2020 Framework Programme of the European Union under grant agreement no 777996.

– Requirements, Business Cases and Architecture (WP2)

 \rightarrow Architecture Components

– Key Management and Authentication (WP3)

- \rightarrow WoT (SOMA-MENSA)
- \rightarrow BLOCKCHAIN (DHT, Chord)

Trusted Computing and Privacy Protection (WP4)

- \rightarrow TEE
- \rightarrow MASKER

Authorization and Security Interoperability (WP5)

- \rightarrow Access Control Policy (ACP)
- \rightarrow Open ID Connect (OIDC)
- \rightarrow Opinion Dynamics (ODYN)

Platform Integration and Assessment Experiments (WP6)

- \rightarrow Prototype Architecture
- \rightarrow VMs / Scenarios

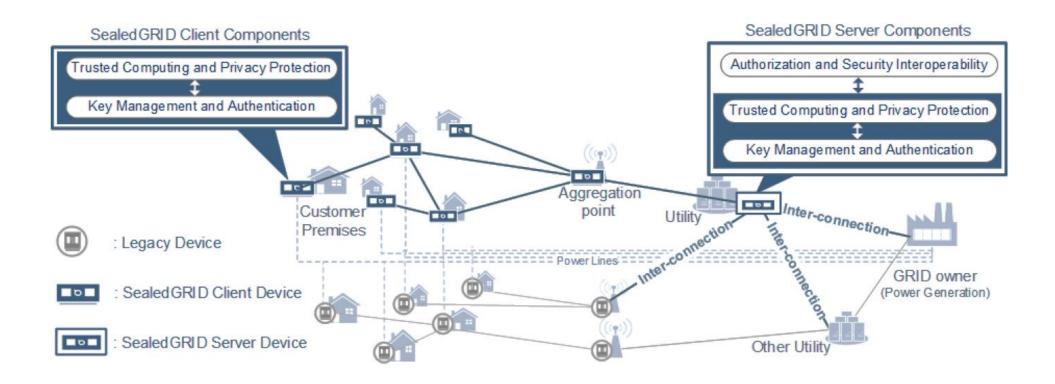
Architecture Components 1/3

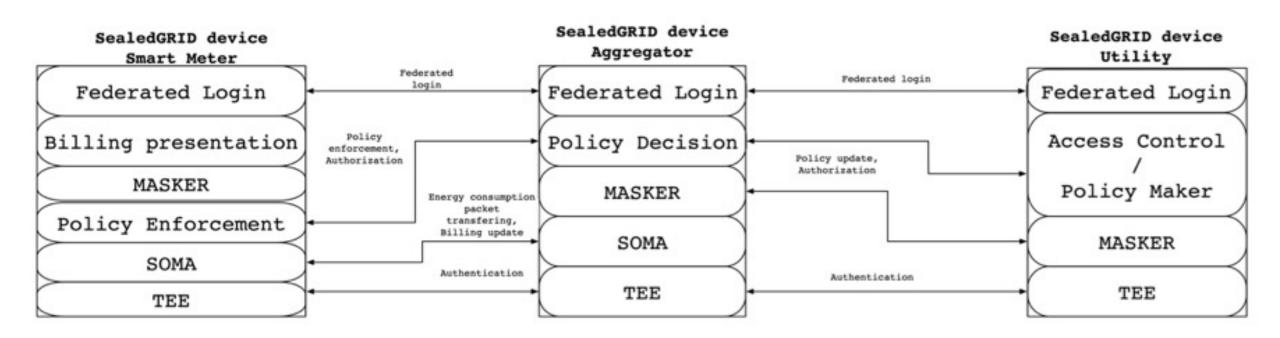
- SealedGRID Components
 - Smart Meters (SM)
 - →**Collect** electricity consumption readings.
 - Aggregators

→Intermediate nodes between the collector and the smart meters

 \rightarrow Sum the individual readings received by the SMs of a neiborhood

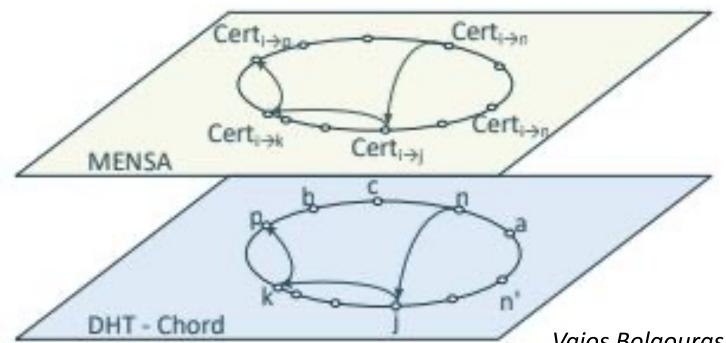
 \rightarrow **Transmits** the result to the Utility.


- Utility
 - \rightarrow Produces the **energy**
 - →Calculates the **final billing**



A scalable, highly trusted, and interoperable Smart Grid security platform.

Architecture Components 3/3



-Authentication and Key management in the SG.

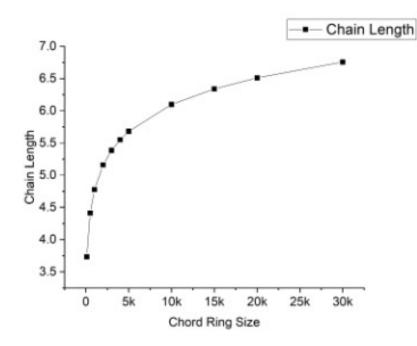
- \rightarrow It is based on **digital certificates**
- →It supports **decentralized** creation, distribution, exchange and revocation of certificates (D3.1)
 - 1. Web of Trust (MENSA, DHT, Chord) (D3.1)
 - It integrates WoT characteristics for decentralizing the authentication process (D3.2
 - 2. Blockchain technology (D3.2)
 - It is built using the Hyperledger Fabric (D3.2)

- First distributed, hybrid authentication and key management system for microgrids
- Eliminates the need for a TTP, while ensures high availability
- Uses **DHT** for **discovery of trust relationships** among the microgrid nodes
- It is a **decentralized** and **flexible** solution that promotes **scalability** and **resilience**
- It allows **frequent** "Join" and/or "Leave" actions without network efficiency impact
- No single point of failure due to decentralized nature

Operations that take place * Node join * Normal Operation * Certificate Revocation * Trusted Execution Environment * Node Leave

Vaios Bolgouras, Christoforos Ntantogian, Emmanouil Panaousis, Christos Xenakis, "Distributed Key Management in Microgrids," IEEE Transactions on Industrial Informatics, Vol. 16, No. 3, pp: 2125-2133, Mar. 2020.

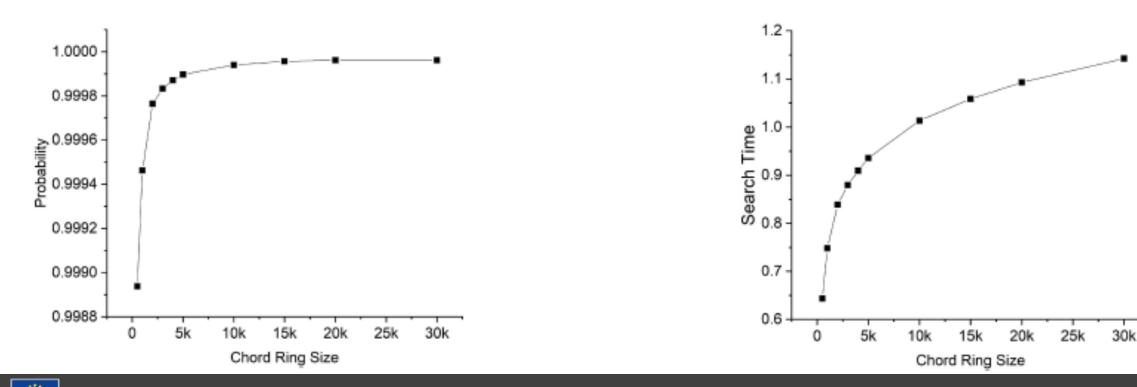
Evaluation Results

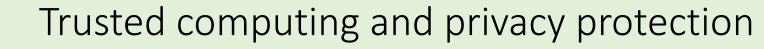

Node Join time delay

- For 0 5.000 nodes the **delay is 1.55 sec**
- While from 20.000 30.000 the delay is 2.2 sec

N	fingerTable size
500	8
5,000	12
15,000	13
30,000	14
5,000,000	22

Chain Length


- Ordered list of certificates starting from the node initiating a lookup operation up to the target node
- Mean length of the chain of trust
- It includes the initiator & the target node



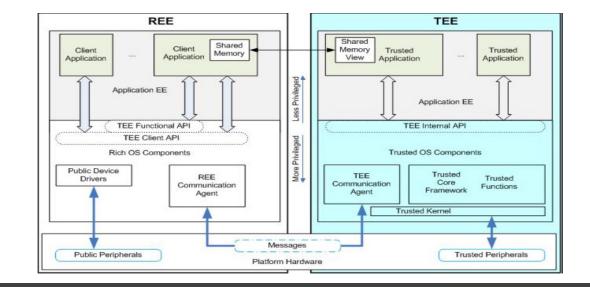
Evaluation Results

The **probability** that **two random nodes** will be able to **establish trust relationship** between them

Average time needed for a random node to establish trust relationships with another random node

-Trusted computing and privacy protection in the SG

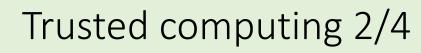
- →A hardware root-of-trust mechanism based Trusted Execution
 Platform (TEE) (D4.1)
- →A remote attestation mechanism that allows devices to generate proof that their current state is trustworthy (D4.1)
- →A privacy protection mechanism for metering results implemented in TEE (D4.2)



SealedGRID

• TEE

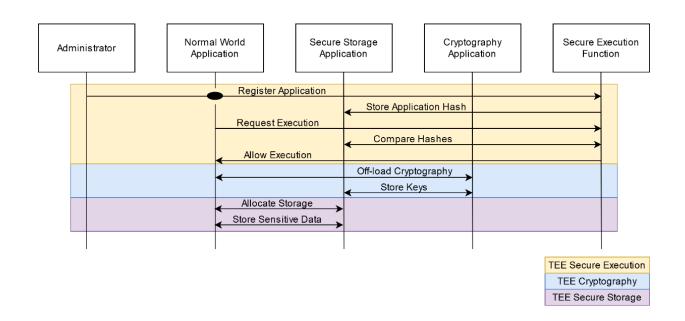
- Cryptographic Storage.
- Remote Attestation Mechanism.
- Generates and securely stores cryptographic keys.
- Generates random numbers.
- Executes cryptographic operations.
- Securely stores certificates.
- Confidentiality.
- Integrity.



Trusted computing 1/4

Opter of the sealed of the sensitive / security-critical functionality.

- The measured speed is more than enough to instantly push and pull data from the TEE storage.
- ✓ Performance in the order of microseconds


OP-TEE

.org

Implementation

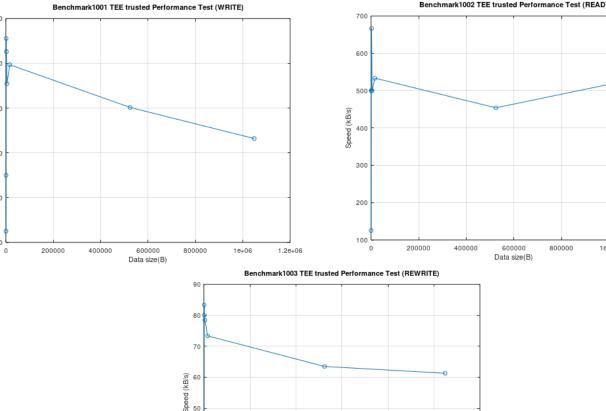
Cryptography Component

- Key Generation
- Encryption / Decryption
- Hash
- Sign / Verify
- Secure Storage Component
 - Store Data in the Secure Storage
 - Pull Data

Binary Verification Component

Enrol Binary Verify Binary

Trusted computing 4/4


Evaluation- Results

Performance Tests:

- TEE Trusted Storage
 - Write _
 - Read
 - Rewrite
- TEE SHA Performance test (SHA1 & SHA256)
- TEE AES Performance test (ECB, CBC) -
- **Regression Testing** -

min (us)	max (us)	mean (us)	stddev (us)
586.144	586.144 5042.05		105.52

SHA1 Execution Times - Minimum, Maximum, Mean and Standard Deviation

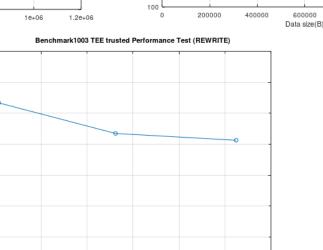
20

0

200000

400000

120


100

Speed (kB/s)

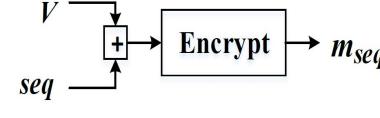
800000

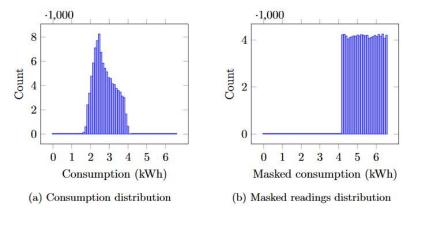
1.2e+06

1e+06

600000

Data size(B)


800000


1e+06

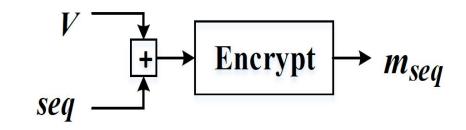
1.2e+06

MASKER: Privacy protection 1/2

- Privacy-preserving aggregation implemented in TEE
- Real-time billing and energy consumption.
- Facilitates Demand Response.
- SMs share **masked values** with the Utility **obfuscating** real consumption readings.
- Aggregators can provide aggregated consumption by several SMs
- Utility subtracts the used masks from the total sum, resulting in the real combined consumption.

• MASKER – Evaluation Testing

3 Tests


- 1st Test: A network with 25 nodes in total
 (20 smart meters, 4 Aggregators, and 1 Utility. Therefore, there is 1 aggregator per 4 smart meters)
- 2nd Test: A network with 55 nodes in total

(50 smart meters, 4 Aggregators, and 1 Utility. Here, the smart meters are separated into 2 groups of 13 and 2 groups of 12. There is 1 aggregator per group)

- 3rd Test: A network with 80 nodes in total

75 smart meters, 4 Aggregators, and 1 Utility. The smart meters are separated into 3 groups of 19 and 1 group of 18 with 1 aggregator per group.

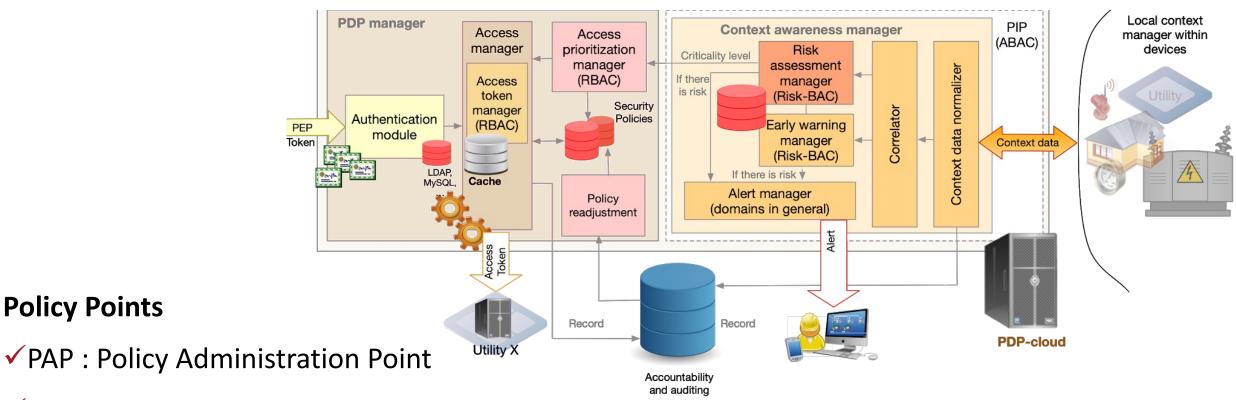
Matric Type	Device			
Metric Type	Smart Meter	Aggregator	Utility	
Top Peak Memory Consumption	2 MB	1 MB	3 MB	
Top Average CPU Consumtion	16%	15.40%	15.20%	
Worst Case Bandwidth Consumption (Traffic)		Total MAX: 5	.85 Mbps	
Maximum Devices in network before system crash	10,240 Devices			

Privacy protection 2/2

SealedGRID Authorization and security interoperability mechanisms

-Authorization and security interoperability mechanisms.

→Hybrid access control policies (ACP) based on RBAC & ABAC (D5.1)


→SSO for the inter-connection and federation of multiple SG domains using the OpenID Connect (OIDC) (D5.2)

→Context-Aware Mechanism to validate access and translate the different security policies to achieve security interoperability (ODyn) (D5.2)

Policy Points

Access Control Policies 1/2

- ✓ PDP : Policy Decision Point
- ✓ PEP : Policy Enforcement Point
- ✓ PIP : Policy Information Point

Access Control Policies 2/2

TESTBED Parameters

Entity	Setup				
Smart Meter	-ARM Device, 4-core CPU at 1-1.2 GHz, 512MB RAM				
Aggregator	-ARM Device, 4-core CPU at 1.2-1.4 GHz, 1GB RAM				
Utility	-Intel Core i5-6500 CPU at 2 GHz 8 cores, 8GB RAM				

Performance Results

# of nodes	Average CPU Utilization (%)			Average Memory Consumption (MB)			API response time (ms)		
	Smart meter	Aggregator	Utility	Smart meter	Aggregator	Utility	Smart meter	Aggregator	Utility
10	6.86	1.39	0.8	154.57	315.69	1455,42	162.85	71	38.62
50	6.68	6.87	3.43	154.71	327.29	1464,28	868.83	357.41	137.96
100	6.58	12.82	6.59	132.28	261.78	1481,81	4041.98	460.3	189.1
500	7.86	19.3	34.3	137.40	304.12	2033,95	6670.35	2529	1545.4

Security interoperability mechanisms 1/3

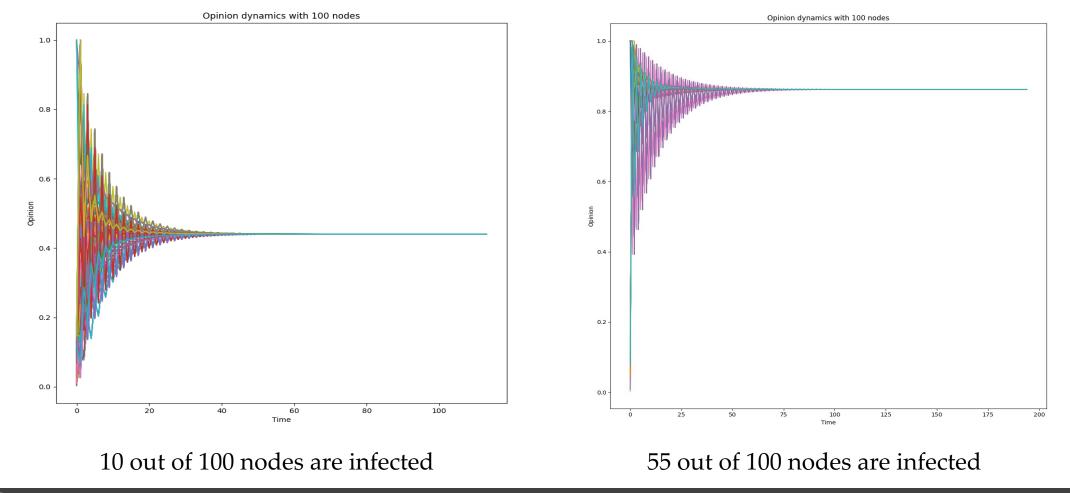
- Federated Login
 - Interoperability
 - Seamless communication among its components.
 - OpenID Connect (OIDC) and OAuth2.0
- Opinion Dynamics (ODyn)
 - Context-awareness mechanism
 - Retrieves data of the current state of the system in real-time.
 - Detects and traces APTs during their entire lifecycle

SealedGRID Authorization and security interoperability mechanisms 2/3

ODyn Evaluation Results

TESTBED Parameters

Entity	Setup				
	-ARM Device single-core CPU at 700MHz, 512MB RAM (Download: 9.6 Mbps; Upload: 9 Mbps)				
Utility	-Intel Core i5-6500 CPU at 3.2 GHz 4 cores, 8GB RAM (Download: 98 Mbps; Upload: 92 Mbps)				


Performance Results

# of nodes	CPU Utilization (%)		Memory Const	umption (%)	Network Usage	
	Smart meter, Aggregator	Utility	Smart meter, Aggregator	Utility	Smart meter, Aggregator	Utility
100		1.47	0.1	0.26	514Kb	51MB
500	1.44	18.07		0.9		255MB
1000		25		1.1		500MB

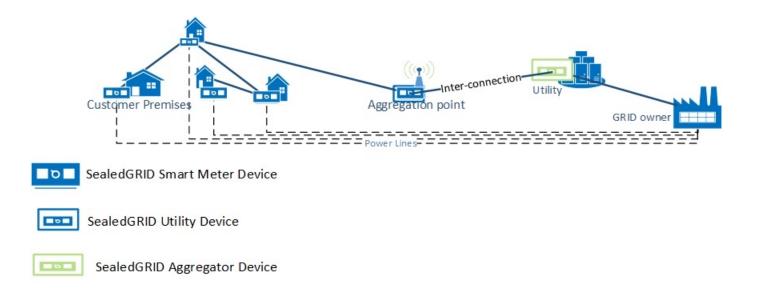
SealedGRID Authorization and security interoperability mechanisms 3/3

ODyn Evaluation Results

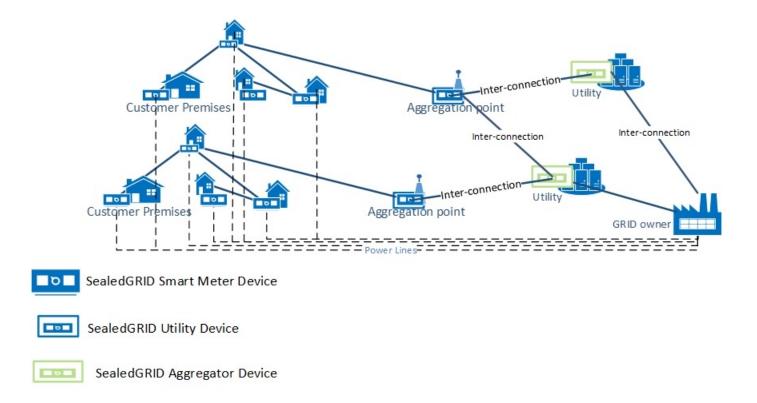
-Platform Integration and Assessment Experiments.

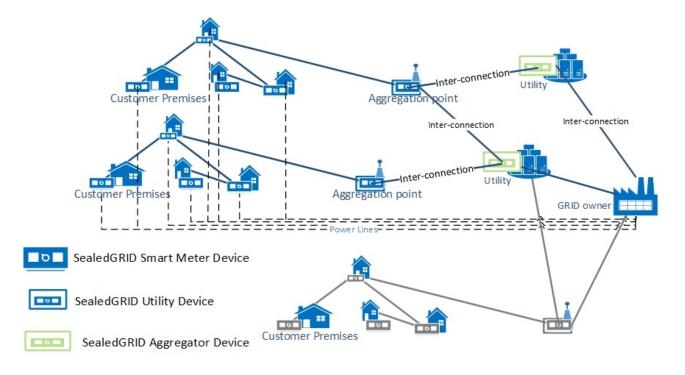
 \rightarrow Initial system design and prototyping (D6.1)

- Key Management, Authentication, Trusted computing Integration
- Authorization, Security Interoperability, Privacy Protection



→Final integrated system (D6.2)


- Use Case A: The single-domain SealedGRID scenario: where all SG devices will be SealedGRID enabled and be part of a single administrative domain.
 - 10 Scenarios


- Use Case B: The multi-domain SealedGRID scenario: where all SG devices will be SealedGRID enabled and inter-connections will have to be managed.
 - 8 Scenarios

- Use Case C: The mixed scenario: where only some of the SG devices will be SealedGRID enabled and interactions between SealedGRID and legacy devices, as well as interconnections, will have to be managed.
 - 5 Scenarios

...the end

Prof. Christos Xenakis xenakis@ssl-unipi.gr

SealedGRID

https://www.sgrid.eu/ Facebook: https://www.facebook.com/SealedGRIDH2020/ Twitter: https://twitter.com/sealedgridh2020?lang=en LinkedIn: https://www.linkedin.com/in/sealedgrid-project-98246b187/ YouTube: https://www.youtube.com/channel/UC7k6Lz_RgV9GDPYyTi8qtTA

