

Grant Agreement N°: 101020259

Topic: SU-DS02-2020

Autonomous Trust, Security and Privacy

Management Framework for IoT

D3.1: Horizontal Planes - first version
Revision: v.1.0

Work package 3

Task Tasks 3.1, 3.2, 3.3, 3.4, and 3.5

Due date 30/4/2022

Submission date 30/4/2022

Deliverable lead RISE

Version 1.0

Partner(s) / Author(s)

RISE: Alfonso Iacovazzi, Han Wang, Shahid Raza

IPN: Paulo Silva, Sérgio Figueiredo, João Rainho, Vitalina
Holubenko

D3.1: Horizontal Planes - first version

© ARCADIAN-IoT Consortium 2021-2024 Page 2 of 74

UWS: Jose M. Alcaraz Calero, Qi Wang, Antonio Matencio
Escolar, Ignacio Sanchez Navarro, Pablo Benlloch Caballero,
Pablo Salva Garcia, Enrique Chirivella Perez, Ruben Ricart-
Sanchez

TRU: João Casal, Carlos Morgado, José Rosa, Tomás Silva,
Ivo Vilas Boas

XLAB: Tilen Marc, Benjamin Benčina

MARTEL: Giacomo Inches

BOX2M: Alexandru Gliga

ATOS: Ross Little, Miguel Montero

D3.1: Horizontal Planes - first version

© ARCADIAN-IoT Consortium 2021-2024 Page 3 of 74

Abstract

This public technical report constitutes the deliverable D3.1 of ARCADIAN-IoT, a Horizon2020
project with the grant agreement number 101020259, under the topic SU-DS02-2020. D3.1 is
the first of a series of three deliverables planned for reporting the findings, achievements, and
outcomes resulted from WP3 research activity.

The material in this document presents the main outcome of all tasks in WP3 during the first seven
months of the work package (from M6 to M12). WP3 is dedicated to the technological
development of the components in the Horizontal Planes of ARCADIAN-IoT framework for each
use case defined in Task 2.1 (Use cases specification and planning) and before being
implemented in WP5. WP3 is organized in five main tasks (from Task 3.1 to 3.5), each of which
focusing on the definition and development of one or more components in the Horizontal Planes.

Keywords: ARCADIAN-IoT, Privacy preservation, Intrusion detection, Intrusion prevention, Self-
healing, Self-protection, Hardened Encryption, Permissioned Blockchain, Cyber Threat
Intelligence.

Document Revision History

Version Date Description of change List of contributor(s)

V0.1 28/02/2022 Preliminary Template RISE

V0.2 15/03/2022 Overview subsections
RISE, UWS, MAR, IPN, TRU,
XLAB, ATOS

V0.3 11/04/2022
Technology research
subsections

RISE, UWS, MAR, IPN, TRU,
XLAB, BOX2M, ATOS

V0.4 13/04/2022
Updates in some
subsections

UWS, XLAB, BOX2M, ATOS

V0.5 28/04/2022
Updates after internal
revision

RISE, UWS, MAR, IPN, TRU,
XLAB, BOX2M, ATOS

V0.6 30/04/2022 Finalization RISE

Disclaimer

The information, documentation, and figures available in this deliverable, is written by the
ARCADIAN-IoT (Autonomous Trust, Security and Privacy Management Framework for IoT) –
project consortium under EC grant agreement 101020259 and does not necessarily reflect the
views of the European Commission. The European Commission is not liable for any use that may
be made of the information contained herein.

Public - The information contained in this document and any attachments are public. It is
governed according to the terms of the project consortium agreement

Copyright notice: © 2021 - 2024 ARCADIAN-IoT Consortium

Project co-funded by the European Commission under SU-DS02-2020

Nature of the deliverable: OTHER

D3.1: Horizontal Planes - first version

© ARCADIAN-IoT Consortium 2021-2024 Page 4 of 74

Dissemination Level

PU Public, fully open, e.g., web √

CI Classified, information as referred to in Commission Decision 2001/844/EC

CO Confidential to ARCADIAN-IoT project and Commission Services

* R: Document, report (excluding the periodic and final reports)
DEM: Demonstrator, pilot, prototype, plan designs
DEC: Websites, patents filing, press & media actions, videos, etc.
OTHER: Technical report, technical diagram, software, evaluation, etc.

D3.1: Horizontal Planes - first version

© ARCADIAN-IoT Consortium 2021-2024 Page 5 of 74

EXECUTIVE SUMMARY

The ARCADIAN-IoT project aims to provide a novel framework to manage and coordinate cyber
security functionalities in IoT systems. The framework is organized in multiple planes combined
together in an optimized way to support the end-to-end services: three Vertical Planes for the
management of identity, trust, and recovery, and three Horizontal Planes for monitoring and
managing privacy of data, security of entities, and providing Permissioned Blockchain and
Hardened Encryption technologies.

Deliverable 3.1 (Horizontal Planes - first version) is a technical report presenting the preliminary
outcomes of the research activities performed around the components in the ARCADIAN-IoT
framework that belong to the horizontal plans (Privacy, Security, and Common planes) and are
being developed in Work Package 3 (WP3) of the ARCADIAN-IoT project. Every component is
introduced by providing a brief overview of its internal architecture and recalling respective
objectives and target Key Performance Indicators (KPIs) before presenting a high-level
description of the main initial outcomes related to the design and development of the component
itself. The planned future work and current resources publicly available (if any, i.e., software,
prototype, etc.) are then described for each component.

The work performed in WP3, and described in this document, is organized in five main tasks (from
Task 3.1 to 3.5), each of which focusing on the definition and development of one or more
components in the Horizontal Planes. Task 3.1 aims at creating an efficient Permissioned
Blockchain based on open-source alternatives such as Hyperledger Fabric, Quorum or
Hyperledger Besu that will in turn support other ARCADIAN-IoT components such as identity
management and reputation components. Task 3.2 focuses on the development of Hardened
Encryption mechanisms to protect private data in resource constrained devices. Task 3.3 is
devoted to creating privacy preserving technologies: (i) a dependable and privacy preserving
classifier based on Federated AI algorithms which will also guarantee the source and data
integrity, and (ii) a Self-aware Data Privacy component that will enhance the way data privacy is
managed in IoT contexts. A novel IoT-specific Cyber Threat Intelligence system based on the
MISP (Malware Information Sharing Platform) toolset which will provide privacy preserving data
sharing capability and IoT-specific Indicators of Compromises is being developed in Task 3.4.
Finally, Task 3.5 aims to define and implement the monitoring and recovering functionalities which
will be provided by the following components: (i) a flow monitoring agent, enhancement of
existing Network Intrusion Detection Systems able to detect known malicious Distributed Denial
of Service (DDoS) along the entire IoT infrastructure, (ii) a Behaviour Monitoring component
able to detect anomalous behaviours that occurs on IoT devices, (iii) a Network Self-healing,
(iv) IoT Network Self-protection, and (v) IoT Device Self-protection capabilities to mitigate and
recover from cyberattacks against IoT networks and devices are developed in Task 3.5.

D3.1: Horizontal Planes - first version

© ARCADIAN-IoT Consortium 2021-2024 Page 6 of 74

TABLE OF CONTENTS

EXECUTIVE SUMMARY ..5

TABLE OF CONTENTS ...6

LIST OF FIGURES ...8

LIST OF TABLES ..9

ABBREVIATIONS .. 10

1 INTRODUCTION .. 13

1.1 Objectives ... 14

2 PRIVACY PLANE... 16

2.1 Self-aware Data Privacy ... 16

2.1.1 Overview .. 16

2.1.2 Technology research .. 17

2.1.3 Future work... 19

2.1.4 Current resources ... 19

2.2 Federated AI ... 20

2.2.1 Overview .. 20

2.2.2 Technology research .. 21

2.2.3 Future work... 23

2.2.4 Current resources ... 23

3 SECURITY PLANE .. 24

3.1 Network Flow Monitoring .. 24

3.1.1 Overview .. 24

3.1.2 Technology research .. 25

3.1.3 Future work... 27

3.1.4 Current resources ... 28

3.2 Behaviour Monitoring .. 29

3.2.1 Overview .. 29

3.2.2 Technology research .. 30

3.2.3 Future work... 34

3.2.4 Current resources ... 35

3.3 Cyber Threat Intelligence .. 36

3.3.1 Overview .. 36

3.3.2 Technology research .. 38

3.3.3 Future work... 39

3.3.4 Current resources ... 40

3.4 Network Self-protection .. 41

3.4.1 Overview .. 41

D3.1: Horizontal Planes - first version

© ARCADIAN-IoT Consortium 2021-2024 Page 7 of 74

3.4.2 Technology research .. 42

3.4.3 Future work... 44

3.4.4 Current resources ... 45

3.5 IoT Device Self-protection ... 46

3.5.1 Overview .. 46

3.5.2 Technology research .. 47

3.5.3 Future work... 51

3.5.4 Current resources ... 51

3.6 Network Self-healing ... 52

3.6.1 Overview .. 52

3.6.2 Technology research .. 53

3.6.3 Future work... 55

3.6.4 Current resources ... 55

4 COMMON PLANE .. 56

4.1 Hardened Encryption .. 56

4.1.1 Overview .. 56

4.1.2 Technology research .. 57

4.1.3 Future work... 63

4.1.4 Current resources ... 64

4.2 Permissioned Blockchain .. 66

4.2.1 Overview .. 66

4.2.2 Technology research .. 67

4.2.3 Future work... 71

4.2.4 Current resources ... 71

5 CONCLUSIONS ... 72

REFERENCES ... 73

D3.1: Horizontal Planes - first version

© ARCADIAN-IoT Consortium 2021-2024 Page 8 of 74

LIST OF FIGURES

Figure 1. ARCADIAN-IoT Conceptual representation highlighting Horizontal Planes. 13

Figure 2. Self-aware Data Privacy logical architecture. ... 16

Figure 3. Draft Data Model for policy specification. ... 18

Figure 4. Overview of Data rebalancing approach. ... 21

Figure 5. Overall schema representing the internal design of Network Flow Monitoring component

deployed on the Cloud Network. ... 25

Figure 6. 5G multi-stakeholder network segments. ... 26

Figure 7. Nested encapsulation example 5G frame between Edge and Core networks. 26

Figure 8. Comparison between SIDS and AIDS approaches. ... 30

Figure 9. General Architecture of the centralized FL model. ... 33

Figure 10. General Architecture of the decentralized FL model. ... 33

Figure 11. The architecture of CTI. ... 36

Figure 12. Network Self-protection architecture. ... 42

Figure 13. IoT Device Self-protection. .. 46

Figure 14. MAPE-K architecture flow representation. ... 48

Figure 15. Risk Levels – C. Raibulet et al. .. 49

Figure 16. eSIM at device self-protection. .. 50

Figure 17. Architecture of the Network Self-healing component. .. 52

Figure 18. Architecture design of the UWS Resource Inventory Agent. 54

Figure 19. Attribute-Based Encryption with multiple authorities. ... 58

Figure 20. eSIM security abilities - GSMA IoT SAFE specifications. ... 59

Figure 21. eUICC structure comprising the IoT SAFE applet. ... 59

Figure 22. GSMA IoT SAFE components and their relation. ... 61

Figure 23. Attribute-Based Encryption architecture with integrated hardware RoT and blockchain

support. .. 63

Figure 24. Example of a blockchain network with three peer nodes.. 67

D3.1: Horizontal Planes - first version

© ARCADIAN-IoT Consortium 2021-2024 Page 9 of 74

LIST OF TABLES

Table 1. Mapping the components to WP tasks. ... 14

Table 2. Example of a system call table (Linus 2.6.38). .. 31

Table 3. Types of attacks in ADFA-LD. ... 32

Table 4. Confusion Matrix. .. 34

Table 5. Selected methods for the first prototype of ARCADIAN-IoT security eSIM applet. 61

D3.1: Horizontal Planes - first version

© ARCADIAN-IoT Consortium 2021-2024 Page 10 of 74

ABBREVIATIONS

3PP 3rd Party Provider

5G 5th Generation

5GS 5G System

ABE Attribute Based Encryption

ADFA-LD Australian Defence Force Academy Linux Dataset

AI Artificial Intelligence

AIDS Anomaly IDS

API Application Programming Interface

CI/CD Continuous Integration (CI) and Continuous Delivery

CP-ABE Ciphertext-Policy ABE

CSIRT Computer Security Incident Response Team

CTI Cyber Threat Intelligence

dApp decentralized Application

DARPA Defense Advanced Research Projects Agency

DCSP Data Centre Service Provider

DDoS Distributed Denial of Service

DID Decentralized Identifier

DLT Distributed Ledger Technology

DSC Datapath Security Controller

DTLS Datagram Transport Layer Security

ECC Elliptic Curve Cryptography

ECDHE Elliptic-curve Diffie–Hellman

ECDSA Elliptic Curve Digital Signature Algorithm

eSIM embedded SIM

eUICC embedded Universal Integrated Circuit Card

FE Functional Encryption

FL Federated Learning

FTP File Transfer Protocol

GENEVE Generic Network Virtualization Encapsulation

GRE Generic Routing Encapsulation

GSMA Global System for Mobile Communications Association

GSMA-SAS GSMA’s Security Accreditation Scheme

GTP GPRS (General Packet Radio Service) Tunnelling Protocol

GUI Graphical User Interface

HE Hardened Encryption

HIDS Host-based IDS

ID Identifier

IDS Intrusion Detection System

IID Independent and Identically Distributed

IMSI International Mobile Subscriber Identity

D3.1: Horizontal Planes - first version

© ARCADIAN-IoT Consortium 2021-2024 Page 11 of 74

IoC Indicator of Compromise

IoT Internet of Things

IoT SAFE IoT SIM Applet For Secure End-2-End Communication

IP Internet Protocol

IPR Intellectual Property Rights

IPS Intrusion Prevention System

IT Information Technology

JSON JavaScript Object Notation

KDD Knowledge Discovery and Data Mining

KPI Key Performance Indicator

LTE Long-Term Evolution

M2M Machine to Machine

MAC Media access control

MISP Malware Information Sharing Platform

ML Machine Learning

MPLS Multiprotocol Label Switching

MVNO Mobile Virtual Network Operator

NAA Network Access Application

NB-IoT Narrowband IoT

NBI North Bound Interface

NFM Network Flow Monitoring

NIDS Network-based IDS

NIST National Institute of Standards and Technology

OPA Open Policy Agent

OS Operating System

OVS OpenVSwitch

PAP Policy Administration Point

PCA Protection Control Agent

PD Protection Decider

PDP Policy Decision Point

PEP Policy Enforcement Point

PHP Hypertext Pre-processor

PoA Proof of Authority

PPP Public Private Partnership

REST Representational State Transfer

RIA Resource Inventory Agent

ROC Receiver Operating Characteristic

RoT Root of Trust

RSA Rivest, Shamir, and Adelman encryption technology

RPC Remote Procedure Call

SDN Software Defined Network

SFMA Security Flow Monitoring Agent

D3.1: Horizontal Planes - first version

© ARCADIAN-IoT Consortium 2021-2024 Page 12 of 74

SHA Secure Hash Algorithm

SHDM Self-Healing Decision Manager

SIDS Signature IDS

SIM Subscriber Identity Module

SMOTE Synthetic Minority Oversampling Technique

SP Service Provider

SSH Secure Shell

STIX Structured Threat Information eXpression

SVM Support Vector Machine

TAXII Trusted Automated eXchange of Intelligence Information

TCP Transmission Control Protocol

TEID Tunnel Endpoint Identification

TLS Transport Layer Security

TPR True Positive Rate

UDP User Datagram Protocol

UE User Equipment

UICC Universal Integrated Circuit Card

UNM University of New Mexico

VISP Virtualisation Infrastructure Service Provider

VLAN Virtual Local Area Network

VNID Virtual Identifier

VxLAN Virtual Extensible Local Area Network

WP Work Package

XDP eXpress Data Path

XML eXtensible Markup Language

D3.1: Horizontal Planes - first version

© ARCADIAN-IoT Consortium 2021-2024 Page 13 of 74

1 INTRODUCTION

The ARCADIAN-IoT project aims to develop a cyber security framework relying on a novel
approach to manage and coordinate, in an integrated way, identity, trust, privacy, security, and
recovery in IoT systems. The proposed approach organizes the multiple cyber security
functionalities offered by the framework into several planes combined together in an optimized
way to support the end-to-end services. In particular, the framework includes three Vertical Planes
devoted to identity, trust, and recovery management, and three Horizontal Planes supporting the
Vertical Planes by managing privacy of data, monitoring security of entities, and providing
Permissioned Blockchain and Hardened Encryption technologies (see Figure 1).

Figure 1. ARCADIAN-IoT Conceptual representation highlighting Horizontal Planes.

Work Package 3 (WP3) in the ARCADIAN-IoT project is dedicated to the design and technological
development of the functionalities that are mapped into the Horizontal Planes for each selected
use case. It is organized in five tasks, each one focusing on one or more components. The
research activity in WP3 is being conducted from October 2021 to October 2023 and this
deliverable (D3.1) details the initial research activities and preliminary findings obtained within
WP3 until April 2022 (seven months). The next deliverable D3.2 will provide an update on the
research achievements obtained till December 2022, while the final description of the developed
components in WP3 together with the final results will be provided in deliverable D3.3 in October
2023. This document also includes the links to the open access source code that has been
produced during the reporting period and not subjected to any Intellectual Property Rights (IPR)
restrictions.

The Horizontal Planes of the ARCADIAN-IoT framework (consisting of ten main components) are
organized as follows:

• The Privacy Plane, which aims to provide functionalities for the privacy-preserving
management of confidential or sensitive data involving persons’ entities, includes the (i)
Self-aware Data Privacy and (ii) Federated Artificial Intelligence (Federated AI)
components.

• The Security Plane contains all the cyber security features required for the monitoring,
prevention, management, and recovery; it comprises the (i) Network Flow Monitoring, (ii)
Behaviour Monitoring, (iii) Cyber Threat Intelligence, (iv) Network Self-protection, (v) IoT
Device Self-protection, and (vi) Network Self-healing components.

• The Common Plane includes the two components that provide common functionalities to

D3.1: Horizontal Planes - first version

© ARCADIAN-IoT Consortium 2021-2024 Page 14 of 74

the Vertical Planes, i.e., (i) the Hardened Encryption and (ii) Permissioned Blockchain.

Table 1 shows how the components in the Horizontal Planes are grouped per plane and in which
task of the project are developed.

Table 1. Mapping the components to WP tasks.

Plane Component Task

Privacy Plane Self-aware Data Privacy 3.3

Federated AI 3.3

Security Plane Network Flow Monitoring 3.5

Behaviour Monitoring 3.5

Cyber Threat Intelligence 3.4

Network Self-protection 3.5

IoT Device Self-protection 3.5

Network Self-healing 3.5

Common Plane Hardened Encryption 3.2

Permissioned Blockchain 3.1

This deliverable is organized in three main sections mapping the three Horizontal Planes. Every
section is split into multiple subsections, each of which describing the research findings for a
specific component in the plane. The description of a component reports: (i) an overview of the
developed component, including its structure in subcomponents, together with a recall of related
requirements and Key Performance Indicators (KPIs); (ii) a summary of the research activities
and findings related to the component for the current reporting period, (iii) the planned future work,
and (iv) the references to the resources currently available that are shared by the partners,
whenever possible.

1.1 Objectives

WP3 aims at contributing to the achievements of six main objectives in the ARCADIAN-IoT
projects. Each objective comes with individual Key Performance Indicators (KPIs). The objectives
are as follows:

• To create a decentralized framework for IoT systems - ARCADIAN-IoT framework.

o The Key Performance Indicator of this objective comprises the achievement of all the
ensuing objectives and their KPIs.

• Enable distributed security and trust in management of persons’ identification.

o Facilitate deployment of blockchain technologies by non-cyber security experts in
cyber security training sessions with, at least 20 participants.

• Provide distributed and autonomous models for trust, security, and privacy –
enablers of a Chain of Trust.

o Enable Federated AI mechanisms for, at least three, heterogeneous devices and
entities

o Enhance robustness of AI models for trust and security management by a factor of
30% in real scenarios

o Enable detection of anomalous behaviour with accuracy of 90%.

D3.1: Horizontal Planes - first version

© ARCADIAN-IoT Consortium 2021-2024 Page 15 of 74

• Provide a Hardened Encryption with recovery ability.

o Provide at least three encryption mechanisms with low overhead

o Enable efficient encryption with Root of Trust (RoT) information

o Support selective recovery ability in encryption mechanisms: who and what can be
recovered.

• Self and coordinated healing with reduced human intervention.

o Recovery, at least 95% of the system functionalities prior to anomalous behaviour

o Support coordination of recovery to pre-defined trust levels

o Reduce human intervention to the strictly required, in healing and recovery
procedures.

• Enable proactive information sharing for trustable Cyber Threat Intelligence and IoT
Security Observatory.

o Promote sharing of IoT threat data in EU, respecting privacy, and data regulations

o Enable a novel automated and privacy-preserved CTI approach exploiting the
European MISP platform (MISP4IoT).

D3.1: Horizontal Planes - first version

© ARCADIAN-IoT Consortium 2021-2024 Page 16 of 74

2 PRIVACY PLANE

The ARCADIAN-IoT provides functionalities that enable the privacy management of confidential
and sensitive data. The Privacy Plane aims to provide a comprehensive and interoperable privacy
management toolset regardless of the IoT system and fully compliant with European data privacy
regulations. This plane includes two main components: the Self-aware Data Privacy (Subsection
2.1) and the Federated AI (Subsection 2.2) components. The research activity related to the
Privacy Plane and described in this Section is part of Task 3.3 (Enablers of privacy preserving for
AI and persons) in Work Package 3 (WP3).

2.1 Self-aware Data Privacy

This research activity relates to the design and development of the Self-aware Data Privacy
component which is part of Task 3.3 (Enablers of privacy preserving for AI and persons) in WP3.

2.1.1 Overview

2.1.1.1 Description

Within the scope of the ARCADIAN-IoT project, Martel is developing a component to empower
the users to better control privacy of their data, in particular by allowing the definition of user-
defined privacy policies for data, and by crowdsourcing policies specified on similar data. The
Self-Aware Data Privacy component includes two main modules: a policy management module
which enforces data privacy via the definition of privacy policies – in the context of this component
policies relates specifically to attributed-based data encryption and/or anonymization -, and a
recommender module which, by assessing policy similarity, suggests privacy policies.

Figure 2. Self-aware Data Privacy logical architecture.

In Figure 2 we illustrate the logical architecture of the Self-aware Data Privacy component and its
dependences with other internal and external components. The “Access Management” module is
a background that Martel is employing to interface the Self-aware Data Privacy component with
the Authentication component provided by Truphone (Deliverable D4.1 [1]). The integration with
this background by Martel will also enable the exploitation of the Self-aware Data Privacy as a
standalone component without requiring the full ARCADIAN-IoT software stack. The module is
complemented by a Graphical User Interface (GUI) that allows end users to define access policies
for the Self-aware data policy component. The core parts of the Self-aware Data Privacy are
instead the “Policy Management” module and the “Recommender” one. The “Policy Management”

D3.1: Horizontal Planes - first version

© ARCADIAN-IoT Consortium 2021-2024 Page 17 of 74

is itself organized into submodules that will allow: (i) end-users to specify custom policy to protect
data or their attributes, potentially via a GUI (“Policy Description”) following a “Data Model;” (ii) to
retrieve data according to the specified policies (“Policy Retrieval”); and (iii) to enforce the policies
by applying encryption/decryption or anonymisation/pseudonymisation to the data (“Policy
Enforcement”) with the help of the component develop by XLAB to provide attribute based
encryption (cf. Subsection 4.1). The “Recommender” module will leverage the “Policy
Management” one to analyse the already issued policies and, based on the extracted features
(semantic, syntactical, etc) compute their similarity based on the data protected, and suggest the
user the best policy to protect her/his data.

2.1.1.2 Requirements

A recall of the high-level requirements that have been previously defined and provided in
deliverable D2.4 [2] is given below.

Requirement 2.1.1 – User defined policies: An authorized user can access the system and specify
for a given data source or data property the security policies that allows to protect the data either
when entering into the system or exiting – or both.

Requirement 2.1.2 – Policies validation: Security policies can be specified in a machine-readable
format (e.g., JSON) and validated against a schema interpreter to assess their validity and
applicability.

Requirement 2.1.3 – Data secured: Data sources or data attribute scan be secured by a given
methodology: anonymisation, pseudo-anonymisation, encryption, and advanced encryption
(hardened) based on attribute-based encryption.

Requirement 2.1.4 – Recommender: The system is able to recognise similarity between new data
and existing data by key, attributes and/or semantic; This result is eventually displayed to users
for facilitating the issuing of security policies.

2.1.1.3 Objectives and KPIs

With the aim of fulfilling the project’s objectives, the main subcomponents of the Self-aware Data
Privacy component will be tested through these KPIs:

• The ability to model policy for at least 5 encryption/anonymisation.

• Precision/recall combined in the F1 score for the recommender algorithms (≥80%).

• Usability of the policing issuer (Likert scale, 90% of positive feedback).

2.1.2 Technology research

2.1.2.1 Technical findings and achievements

The current work has focused on defining the architecture and a set of subcomponents for the
Self-aware Data Privacy to achieve the goal of allowing data owner and managers to define
policies for protecting those data and enforce their protection.

The architecture which we briefly described in Section 2.1.1.1 implements three state-of-the-art
reference components (as defined in the OASIS XACML standard architecture1) through different
open-source tools.

• Policy Decision Point (PDP): is based on the open-source, general-purpose policy

1 https://www.oasis-open.org/committees/xacml/

https://www.oasis-open.org/committees/xacml/

D3.1: Horizontal Planes - first version

© ARCADIAN-IoT Consortium 2021-2024 Page 18 of 74

engine Open Policy Agent (OPA2), which decouples policy decision-making from policy
enforcement, and it is designed to be employed in several deployment environments, from
microservices to Kubernetes, from CI/CD pipelines to API gateways. OPA generates
policy decisions by evaluating a query input (can be any structured data, e.g., JSON)
against policies and data. The query input is informally identified as “Policy Retrieval” in
Figure 2 and the interface between OPA and the “Authentication” API has been one of the
focuses of this first part of the project.

• Policy Administration Point (PAP): is a custom API currently under development in
ARCADIAN-IoT and that will be released as open source under a permissive license
schema (e.g., APACHE 2). This module corresponds to the “Policy Description” in Figure
2 and its main purpose is to provide to OPA the knowledge based upon which it will
evaluate which technique (encryption/decryption, anonymisation) will be applied to protect
data. The API follows the Data Model (cf. Figure 3) drafted up to know and that may further
be refined to accommodate the specific needs of the Domains (WP5). At a later stage, the
API will be complemented by a GUI to facilitate the management of the policies by the end
users.

Figure 3. Draft Data Model for policy specification.

• Policy Enforcement Point (PEP): will leverage envoy proxy3 and provide a plugin for it
to interface with PDP and PAP to unsure data is protected/accessed according to the
policies specified. This component will leverage the encryption/decryption Libraries or API
provided by XLAB (Section 4.1) to implement the security policies.

As regards the Recommender module, at the being we conducted a state-of-the-art study of the
existing algorithms to assess structured document similarity like JSON schema by attributes, by
keys, by semantic, etc. and state-of-the-art study of recommender system algorithms, which we
plan to implement in the second part of the development cycle.

2.1.2.2 Evaluation approach

The evaluation will be done module by module in an isolated approach within Martel, then an

2 https://www.openpolicyagent.org
3 https://www.envoyproxy.io/docs/envoy/latest

https://www.openpolicyagent.org/
https://www.envoyproxy.io/docs/envoy/latest

D3.1: Horizontal Planes - first version

© ARCADIAN-IoT Consortium 2021-2024 Page 19 of 74

integration test will be run along the whole chain, from the authentication to the policy enforcement
to the data. In this stage fabricated data will be employed to allow for a smooth testing. Once the
component will be robust enough, it will be deployed as integrated within the Domains with real
(or close-to-real) data.

2.1.3 Future work

The future work will focus on finalising the API for policy definitions and its corresponding GUI,
then to link the API to the PDP. The next step will be the implementation and testing of the PEP,
i.e., the application of the algorithms for encryption/decryption or anonymisation/
pseudonymisation of the data. A first prototype will be released in the scope of deliverable D3.2,
while the fully integrated system will be released at the end of the development cycle in deliverable
D3.3. In parallel to this, we will design the architecture of the Recommender system based on the
refined Data Model and curate its implementation, which will be released and documented in
deliverable D3.3.

2.1.4 Current resources

The code of the component for the Access Control, can be found on GitHub, under the codename
of “Anubis” and with an open-source license.4

4 https://github.com/orchestracities/anubis

https://github.com/orchestracities/anubis

D3.1: Horizontal Planes - first version

© ARCADIAN-IoT Consortium 2021-2024 Page 20 of 74

2.2 Federated AI

The research activity related to the design and development of the Federated AI component is
part of Task 3.3 (Enablers of privacy preserving for AI and persons) in WP3.

2.2.1 Overview

2.2.1.1 Description

Within the scope of the ARCADIAN-IoT project, Research Institutes of Sweden (RISE) is building
dependable and privacy preserving Federated Learning (FL) capabilities which will be deployed
in machine learning (ML)-based components (e.g., CTI and Behaviour Monitoring components).
The proposed solution will provide both source integrity (the guarantee that no malicious
participant is involved in the process) and data integrity (privacy of raw data and local model
updates is preserved). In addition, RISE is investigating the problem of having statistical and
systematic heterogeneity of data in IoT environments, which usually determines an inaccurate
and vulnerable training process.

Federated AI component will be developed as integrated module within those ARCADIAN-IoT
components that provide ML models as their functionalities (e.g., CTI and Behaviour Monitoring
component). It includes two subcomponents: data rebalancer and model resizing and sharing.
Data rebalancer will provide a way to rebalance and fit non-Independent and Identically
Distributed (non-IID) data to the framework; Model resizing and sharing will implement a
communication-efficient and robust framework for model aggregation while preserving source
integrity. This subcomponent accelerates and protects the local model from being attacked by
adversarial attacks from malicious entities. Data integrity will be provided by (i) the data
rebalancer which will only share generated synthetic data and (ii) the model resizing and sharing
subcomponent which will use standard FL paradigm to share only processed ML models.

2.2.1.2 Requirements

A recall of the high-level requirements that have been previously defined and provided in
deliverable D2.4 [2] is given below.

Requirement 2.2.1 – Malicious behaviours from sharing entities to be detected: When an entity
collaborating in the FL setup misbehaves during the learning process, it should be detected in
order to invalidate the output.

Requirement 2.2.2 – Local ML model to be lightweight: The models that are generated locally by
the CTI should be lightweight, as this will make the FL more efficient in the federated model
computation.

Requirement 2.2.3 – At least three heterogeneous devices/entities: The Federated AI
mechanisms should support the training among at least three heterogeneous devices and
entities.

2.2.1.3 Objectives and KPIs

The main objective is to provide a dependable privacy preserving classifier based on FL which (i)
incorporates classical data balancing techniques traditionally used for dealing with imbalanced
date in centralized ML, and (ii) ensures source and data integrity in the learning phase. With the
aim of fulfilling the project’s objectives, the Federated AI module will be evaluated against the
following KPIs:

• Enable Federated AI mechanisms for at least three heterogeneous devices and entities.

• Provide detection of anomalous behaviour with accuracy of 90%.

• Enhance computational complexity of data rebalancer for FL by a factor of 20% in real

D3.1: Horizontal Planes - first version

© ARCADIAN-IoT Consortium 2021-2024 Page 21 of 74

scenarios.

• Enhance robustness of AI models for trust and security management by a factor of 30%
in real scenarios.

All these KPIs are related to the main project objective “Provide distributed and autonomous
models for trust, security and privacy – enablers of a Chain of Trust” (as recalled in Introduction).

2.2.2 Technology research

2.2.2.1 Technical findings and achievements

During the current reporting period, RISE has focused on the definition and development of
methods for rebalancing non-IID and imbalanced data. The research activity performed can be
summarized as follow:

• Studied the issues related to the statistical heterogeneity (non-IID data) within Federated
AI and IoT network, which usually causes a degradation of training the models.

• Explored and analysed three state-of-the-art data rebalancing methods.

• Designed and implemented a new potential solution for data rebalancing.

Statistical heterogeneity can arise from non-IID data collection in IoT networks, because of the
FL setups, the number of the data points or data distribution may vary significantly across devices
or clients, which would degrade the performance of the model. Imbalanced data is a common
issue in real-world classification tasks. It refers to the problem that one class is heavily under-
represented compared to the other class, in a two-class classification problem. It affects the
performance of the classifier since prediction leans towards the majority class, and the minor
class is usually wrongly classified. This situation is typical for many cyber security applications,
including anomaly, attack, or fraud detection, where datasets are often quite imbalanced. The
state-of-the-art data rebalancing techniques include: (i) oversampling [3], (ii) under-sampling [4],
and (iii) Synthetic Minority Oversampling Technique (SMOTE) [5,6]. Oversampling and under-
sampling are two classic techniques to address this issue. Nonetheless, the application of these
techniques has not been explored in contexts for FL.

After understanding the challenges and situations of previous works, RISE has studied an
adaptive data rebalancing technique, which can be used in peer-to-peer FL, and for non-IID data.
Starting from the K-SMOTE [7], a variation of the original SMOTE for IoT settings, RISE has
defined a new technique able to generate more complex synthetic points to share some of them
with other participating clients. Figure 4 depicts how the proposed Data rebalancer subcomponent
works.

Figure 4. Overview of Data rebalancing approach.

D3.1: Horizontal Planes - first version

© ARCADIAN-IoT Consortium 2021-2024 Page 22 of 74

Within an IoT network, the Data rebalancer can be deployed on the edge devices, referred to as
clients in FL setups. The edge device can be, for example, a gateway that includes Behaviour
Monitoring capabilities in order to detect any malicious activities. In our proposed solution, there
is no central node required to participate to or orchestrate the training process. Overall, the entire
process that involves the data balancer consists of three phases: (i) synthetic data generation, (ii)
model optimization, and (iii) data and model sharing. In the first phase, the training data available
at a client are rebalanced by an over-sampling technique (i.e., augmenting the number of data
points from the minority class) which generates synthetic data points from the genuine data points
in the minority class. The synthetic data points are randomly split into three subsets (𝐴, 𝐵, and 𝐶).

The synthetic data points in the set (𝐴 ∪ 𝐵)5 are merged with the genuine data points so as to
obtain a balanced dataset which is fed into the local ML model stored by the client. Then, the ML
model is trained with the merged balanced dataset. Finally, the resulting model and synthetic data
points in the set (𝐵 ∪ 𝐶) are shared with a subset of the connected clients. It is important to note
that the clients are not sharing directly training data points, but a mix of synthetic data points
which are partially not used for training the local model.

Again, the cause of non-IID phenomenon is heterogeneity of various IoT devices, and this
phenomenon degrades the model’s performance in FL. It is bound to sacrifice some privacy to
solve the problem of non-IID. Instead of having an auxiliary dataset maintained by the central
node, the algorithm shares only some artificial data between some participants to help their local
data rebalancing. The challenge is how to preserve the privacy of data when sharing the artificial
data which is generated based on the raw data. SMOTE, as a state-of-the-art rebalancing method,
has been used in many imbalanced data problems. It generates synthetic data by linear
interpolation of samples in the minority class. However, it has the risk that the genuine data points
are easy to be inferred when synthetic data is shared with other peers. To reduce the risk of
privacy breaches, RISE defined and developed HSphere-SMOTE, an enhanced version of the
SMOTE, suitable for FL sessions in IoT scenarios.

Algorithm 1 describes the whole process of HSphere-SMOTE in detail. First, the input to the

5 The symbol ∪ is employed to denote the union of two sets.

D3.1: Horizontal Planes - first version

© ARCADIAN-IoT Consortium 2021-2024 Page 23 of 74

algorithm consists of the dataset that includes labelled data from the minority class, and several
hyper-parameters including the number of base data to re-sample and the number of synthetic
points to be created. The output is the final set of synthetic points. HSphere-SMOTE first randomly
picks 𝑑𝑠𝑎𝑚 base data points (line 1). For each base data point 𝑥𝑖, the algorithm samples 𝑑𝑝𝑒

synthetic points from a probability density function 𝑃𝐻𝑆𝑝ℎ𝑒𝑟𝑒 with uniform distribution over the

volume of a hypersphere centered at 𝑥𝑐𝑖 and with radius equals to the maximum distance between

𝑥𝑐𝑖 and any neighbours of 𝑥𝑖.

2.2.2.2 Evaluation approach

The proposed solutions for FL will be tested and evaluated in ICE Data center (Infrastructure and
Cloud research & test Environment), a facility, owned by RISE, which provides Kubernetes cluster
equipped with Nvidia-Gtx-2080ti GPU and 10 GB CUDA memory.

The performance of Data rebalancer will be evaluated both in traditional federated setting and
peer-to-peer federated setting. It will be evaluated in four scenarios: (i) Globally balanced and IID
data, (ii) Globally imbalanced and IID data, (iii) Globally imbalanced and mixed IID data, and (iv)
Globally imbalanced and non-IID data. All four mentioned scenarios are considering the anomaly
detection problem in IoT networks, which means it is a binary classification problem that include
benign and malicious traffic.

The general evaluation metrics for classification, such as accuracy, are ambiguous and
misleading in the case of problems involving imbalanced datasets, as the accuracy shows the
ratio of correct classified among the whole dataset, which it easily biases towards to the majority
class. We therefore choose False Negative Rate, False Positive Rate, Recall value when the
precision reaches 75%, and Precision value when the Recall reaches 75% for each local model.
Additionally, we will analyse the computational and the communication costs. The results will be
compared against those obtained by the mentioned state-of-the-art solutions, including the most
recent K-SMOTE algorithm.

2.2.3 Future work

Future work will focus on the following: (i) Performance evaluation on real-world datasets for
rebalancer in federated setting for IoT scenarios, (ii) Definition of a method for model resizing and
sharing with communication efficiency and robustness for IoT scenarios, (iii) Development of the
method for model resizing and sharing and performance evaluation, (iv) Integration and
deployment of the FL component and its subcomponents into the Behaviour Monitoring and CTI
components. A first prototype will be prepared on time for deliverable D3.2, while the fully
integrated system will be available at the end of the development cycle and provided in deliverable
D3.3.

2.2.4 Current resources

Due to the early stage of development, there are no resources currently available to public. The
source code of the data rebalancer will be released as open source once all the evaluations are
completed. The same will apply to other code produced within this task.

D3.1: Horizontal Planes - first version

© ARCADIAN-IoT Consortium 2021-2024 Page 24 of 74

3 SECURITY PLANE

The Security Plane of the ARCADIAN-IoT framework includes a set of tools dedicated to the cyber
security incident detection, response, management, and recovery for IoT systems. The plane
consists of a total of six components: (i) Network Flow Monitoring (focusing on the network), (ii)
Behaviour Monitoring (focusing on devices), (iii) Cyber Threat Intelligence, (iv) Network Self-
healing, (v) IoT Device Self-protection, and (vi) Network Self-protection.

The research activity related to the Security Horizontal Layer is part of Task 3.4 (Cyber Threat
Intelligence for IoT systems) and Task 3.5 (Self-healing and self-protection for IoT systems) of
WP3.

3.1 Network Flow Monitoring

The design and development of the Network Flow Monitoring component is part of Task 3.5 (Self-
healing and self-protection for IoT systems) in WP3.

3.1.1 Overview

3.1.1.1 Description

Within the scope of the ARCADIAN-IoT project, University of West of Scotland (UWS) is
developing the Network Flow Monitoring (NFM) component that will act as an enhancement of
existing Network Intrusion Detection Systems (NIDS), such as Snort,6 to achieve the detection of
known malicious Distributed Denial of Service (DDoS) along the entire infrastructure of the 5G
network. As shown in Figure 5, this will be achieved by the contribution of two different
subcomponents: (i) an NIDS with an updated set of rules for known DDoS attacks, and (ii) the
Security Flow Monitoring Agent (SFMA) that will act as a wrapper for the NIDS alert and will
provide fine data information about the malicious flow detected. This component will provide
support not only for traditional IP networks, but also for the overlay networks currently used in
cloud infrastructures employing overlay/encapsulation protocols such as Virtual Extensible LAN
(VxLAN), Generic Routing Encapsulation (GRE), Generic Network Virtualization Encapsulation
(GENEVE), those currently used in enterprise infrastructures such as VLAN, and those currently
used in cellular and IoT mobile operator networks such as GTP used in LTE-M and NB-IoT.

6 https://www.snort.org/

https://www.snort.org/

D3.1: Horizontal Planes - first version

© ARCADIAN-IoT Consortium 2021-2024 Page 25 of 74

Figure 5. Overall schema representing the internal design of Network Flow Monitoring component
deployed on the Cloud Network.

3.1.1.2 Requirements

A recall of the high-level requirement that has been previously defined and provided in deliverable
D2.4 [2] is given below.

Requirement 3.1.1 – IoT Network Detection: The flow monitoring component will have the
capabilities to perform the detection of DDoS attacks in any network segment of the IoT
infrastructure, triggering the associated alert.

3.1.1.3 Objectives and KPIs

The aim of the Network Flow Monitoring component is to provide network intrusion detection
capabilities for overlay networks into the ARCADIAN-IoT framework. With the aim of fulfilling the
project’s objectives, the following KPI will be used to assess and validate the performance of the
Network Flow Monitoring component:

• Reduce human intervention to the strictly required, in healing and recovery procedures.

This KPI is related to the main project objective “Self and coordinated healing with reduced human
intervention” (as recalled in Introduction). Thus, this component will further contribute to mitigate
and reduce the number of cyber incidents involving IoT networks.

3.1.2 Technology research

3.1.2.1 Technical findings and achievements

The 5GS (5G System) architecture presents several different stakeholders that are involved in

D3.1: Horizontal Planes - first version

© ARCADIAN-IoT Consortium 2021-2024 Page 26 of 74

the provisioning of 5G network resources, as presented in the View on 5G Architecture by the 5G
PPP (5G Public Private Partnership) [8]. A key role in the provision of 5G services is that of the
Service Provider (SP), which interacts directly with service customers and obtains and
orchestrates resources from Network Operators, VISPs (Virtualisation Infrastructure Service
Providers) and DCSPs (Data Centre Service Providers), collectively referred to as infrastructure
providers. Figure 6 presents such a 5G scenario where there are physical resources that are
shared by means of a virtual layer and where the main architectural elements of the 5G
architecture are depicted. When a User Equipment (UE) is connected to an antenna, which
belongs to operator A, this user is identified in the 5G networks by their TEID (tunnel endpoint
identification) of their associated GTP tunnels. Also, some architectural elements of the 5G
network are associated to a given tenant/operator, which is identified with its unique virtual ID
(VNID) given by the VxLAN encapsulation. It means that each packet sent from one user to
another user allocated in a different antenna must be encapsulated at least twice in the network
segment between the edge and the core of the network. In a first stage VxLAN isolates the tenant
traffic, and in a second stage, GTP provides user mobility. An example of this nested
encapsulation can be found in Figure 7.

Figure 6. 5G multi-stakeholder network segments.

Figure 7. Nested encapsulation example 5G frame between Edge and Core networks.

Traditional signature-based NIDS such as Snort are mainly designed to provide detection
capabilities to traditional IP networks. Thus, they do not provide support to detect transversal
overlay networks being encapsulated over such IP networks, no IDS support VxLAN
encapsulation which is needed for the tenant-isolation of traffic allowing L2 overlay networks.
Also, even the most advanced IDS published up to date does not provide any support for double
encapsulated traffic (nested encapsulation) which is exactly the main requirement imposed by the
5G multi-tenant architectures. This lack of support for transversal detection and nested
encapsulation makes traditional IDS tools unsuitable for the new network traffic patterns imposed
by 5G architecture. As a novel capability, the NIDS should be able to detect simultaneously
attacks being addressed over a 5G user, a tenant, or the entire infrastructure. The proposed
architecture for the NFM component makes the following contributions and achievements to IoT
5G Network security:

• Diverse types of traffic tagging and encapsulation protocols are supported such as VxLAN,
GTP, GRE, and tagging protocols such as MPLS and VLAN allowing the usage of the
NIDS in the edge and other network segments, unlike traditional NIDS solutions.

• This approach accomplishes one of the most important requirements of 5G Network
protection systems, which is being tenant-aware, but also 5G user-aware.

After a deep study of the novelties and state of the art of the technologies that UWS is using within

D3.1: Horizontal Planes - first version

© ARCADIAN-IoT Consortium 2021-2024 Page 27 of 74

NFM component (such as the NIDS and the proposed SFMA), the current status of the cited
component is as follows: An analysis of different DDoS known attacks have been done, related
to signature-based NIDS as explained in this section. It has been developed a tool that helps the
researcher to deploy botnets with the main purpose of emulating known attacks over a 5G network
infrastructure. These attacks can be launched from different numbers of attackers, representing
one of the main characteristics that help studying the impact of volumetry of the attacks in the
system. The tool developed is responsible of creating the IoT emulated devices with a DDoS tool
installed in them.7

As mentioned in this section, there are some configuration and strategies that UWS will follow to
retrieve a good deployment of the NIDS. The use of Unified2 protocol to report Snort logs is one
of the most important, so this report can be binary stored, and this can help to improve the
performance of the component.

Finally, UWS is currently focusing on the design of the SFMA subcomponent, which provides
functionalities for retrieving nested encapsulation of the packets, as showed in Figure 7. Once
this subcomponent is finally designed, the NFM design will be also finished.

3.1.2.2 Evaluation approach

Following the prototyping and as preliminary step towards the integration with the rest of the
architectural components composing the different Horizontal Planes of the ARCADIAN-IoT
framework, the overall behaviour of the NFM component will be empirically tested. The tests will
be carried out in the cloud data centre at the UWS facilities and will be focused on two main
aspects: functional validation and overall performance.

For validating the functionality of the component, it will be exposed to a set of scenarios, in a 5G
system, where different known DDoS attacks will be launched. This will ensure that the
effectiveness of the component is as expected, as the component is designed to trigger alerts in
the moment that one of the network flows matches any of the rules stored into the Snort rules
database.

On the other hand, the NFM component will be critically analysed in different areas to demonstrate
its performance in different situations. In particular we will analyse:

• Scalability – Maximum Number of IoT devices traffic handled.

• Bandwidth – Maximum data rate that the component is able to deal with.

• Delay – Average time to process each alert; This involves the time consumed by Snort to
match a rule and trigger the alert to the unified2 log file, the time consumed by the SFMA
to analyse the alert and trigger the new one with the full information of the overlay networks
to the following components.

3.1.3 Future work

Currently the UWS team is engaged in the development of a first functional prototype. The
development of a Botnet IoT traffic emulator is the first step achieved in this prototype and follows
the configuration of the NIDS and the development of a SFMA prototype. A first version of this
prototype will be available during the second year of the project.

After prototyping and as a last step in the development of the component, the prototype will be
empirically validated and evaluated (as described in previous Subsection 3.1.2.2). Hence, a last
version of the prototype will be provided in deliverable D3.2 and an empirical validation and
evaluation of the overall performance of this component will be reported in deliverable D3.3 with

7 https://github.com/markus-go/bonesi

https://github.com/markus-go/bonesi

D3.1: Horizontal Planes - first version

© ARCADIAN-IoT Consortium 2021-2024 Page 28 of 74

the subsequent integration in the overall ARCADIAN-IoT framework.

3.1.4 Current resources

Due to the application of IPR safeguarding measures, UWS has not the intention to make any
release of the source code for this component and thus it will not be made available in any public
or private repository or server outside of our premises. For integration purposes, a functional
prototype of the Network Flow Monitoring component will be released for the ARCADIAN-IoT
consortium.

D3.1: Horizontal Planes - first version

© ARCADIAN-IoT Consortium 2021-2024 Page 29 of 74

3.2 Behaviour Monitoring

The design and development of the Behaviour Monitoring component is part of Task 3.5 (Self-
healing and self-protection for IoT systems) in WP3.

3.2.1 Overview

3.2.1.1 Description

In order to enhance the security of the IoT devices, the ARCADIAN-IoT project is set out to
develop a component that aims to detect anomalous behaviour that occurs on device level. The
component at hand is a host-based intrusion detection system (HIDS) specialized for IoT devices,
which takes the task of examining incoming events that are specific to the host device (such as
what applications are being used, what files are being accessed, permission changes, sequences
of system calls and authentication attempts).

The component will be comprised by a set of subcomponents that aim to collect and classify the
events with the use of lightweight ML models. The models are going to be updated via a FL
scheme, which will ensure the preservation of privacy of the participating devices in the network.

The detection is to be performed in real time to make sure that everything is running normally and
detect any sign of intrusion. The resulting output of this component will consist of a value that
indicates if the event was classified as an intrusion or normal, if there was an intrusion detected,
the component should also be able to classify the intrusion from the existing known types of
attacks. The information will be packaged and forwarded to other ARCADIAN-IoT components,
for instance, if there was an intrusion detected, the information should be received by the IoT
Device Self-protection component, where its role is to protect devices against the incoming
attacks.

3.2.1.2 Requirements

A recall of the high-level requirements that have been previously defined and provided in
deliverable D2.4 [2] is given below.

Requirement 3.2.1 – User logs access: The Behaviour Monitoring component must have access
to device’s user logs in order to detect possible security issues.

Requirement 3.2.2 – Device permissions: The Behaviour Monitoring component must be aware
of permissions granted to applications/services accessing the device.

Requirement 3.2.3 – Local model training capabilities: The ML models should be lightweight and
be able to run on the device.

Requirement 3.2.4 – Response to anomalies: The Behaviour Monitoring component should be
able to send an alarm, in real time, when anomalous behaviour is detected.

Requirement 3.2.5 – Secure Communication: The Behaviour Monitoring component
communications between the devices and the central server should be secured (e.g., using
encryption).

3.2.1.3 Objectives and KPIs

The main objective of the Behaviour Monitoring component is to detect any anomalous behaviour,
in real time, on IoT devices based on device level events. The component will be evaluated
against the following KPIs:

• Enable detection of anomalous behaviour with accuracy of 90%.

• Response time of the system when an intrusion occurs be not more than 30s.

D3.1: Horizontal Planes - first version

© ARCADIAN-IoT Consortium 2021-2024 Page 30 of 74

• Enable local training in at least 2 different types of devices (e.g., smartphone, IoT GW).

• Use FL in the anomaly detection pipeline in at least 2 different types of devices (e.g.,
smartphone, IoT gateway).

All these KPIs are related to the main project objective “Provide distributed and autonomous
models for trust, security and privacy – enablers of a Chain of Trust” (as recalled in Introduction).

3.2.2 Technology research

3.2.2.1 Technical findings and achievements

Host-Based Intrusion Detection System (HIDS) solutions are typically deployed across networks
and systems and not directly on IoT devices. However, vulnerabilities in IoT devices are becoming
more easily exploitable as the types of attacks are equally evolving. To this end, research is
turning towards understanding trends within system data to be able to detect intrusions quicker
and more efficiently in IoT devices. Cyber security becomes ever more necessary as more IoT
devices flood the market. As such, the Behaviour Monitoring component will act as a lightweight
HIDS that is capable of running directly on IoT devices.

HIDSs have been shown to be an effective means of protection on modern systems. Such
systems are able to detect intrusions on an individual host by analysing the information that is
available on the machine (e.g., system calls, network traffic, or others).

Literature shows that several methods for intrusion detection have been proposed. These can be
categorized as either Signature Intrusion Detection System (SIDS), which can be described as a
process where a unique pattern is established about a known threat so that the threat can be
identified in the future, or as Anomaly Intrusion Detection System (AIDS), that focuses on
detecting behaviour that is unknown to the system. Figure 8 depicts the main differences between
the two methods.

Figure 8. Comparison between SIDS and AIDS approaches.

SIDSs are most commonly used for identifying threats that are already known. However, as
expected, SIDSs show difficulty in detecting zero-day attacks because there is no matching
signature in the database until the signature of the new attack is added.

On the other hand, an anomaly-based system has a constructed model of normal behaviour.
AIDSs have drawn interest from a lot of cyber security researchers due to its capacity to overcome
the limitations imposed by SIDS. The detection system indicates an attack when the observed

D3.1: Horizontal Planes - first version

© ARCADIAN-IoT Consortium 2021-2024 Page 31 of 74

behaviour statistically deviates from the modelled normal behaviour.

The development of AIDS is composed of two phases: the training phase and the testing phase.
In the training phase, normal traffic profiles are used to teach a model of normal behaviour. Then,
in the testing phase, a new data set is used (preferably with data that has intrusion traces) to
evaluate the system’s capacity to generalize intrusions, even if the intrusions are zero-day
attacks.

Let's consider a scenario where a device is being used on an open network and a third party
intends to perform malicious actions on the said device. To detect these malicious actions, one
way we can go about doing this is to search for specific characteristics of the attack. For instance,
the attacker performs actions/commands on the system that are different from the way a typical
user would. This can be used to create a detection system that will search for these deviations
from the normal behaviour on the IoT device. Some examples of these anomalies are unusual
read/write (or other system calls) behaviour or multiple login attempts in a certain timeframe to
the machine.

A system call is a fundamental interface between a program on a machine and the operating
system. The system call is a way for a user program to request an operation to be completed by
the operating system. For example, a program may want to open a file and then copy it to a new
directory. These tasks can be accomplished by following a sequence of system calls. As a result,
programs running on the machine will produce sequences of system calls, also known as system
call traces. The amount of possible system calls can be described as the alphabet based on the
operating system. The size of the alphabet is generally large and depends on the system
architecture, for example, the Linux 2.6.38 has a dictionary with a total amount of 324 distinct
system calls (see Table 2).

Table 2. Example of a system call table (Linus 2.6.38).

Number Name
0 sys_restart_syscall

1 sys_exit
2 sys_fork
3 sys_read
... …
265 sys_clock_gettime
... …
322 sys_timerfd_create
... ..

System calls (or syscalls) are a popular data source for HIDSs because they are a primary artifact
of the OS kernel, and their collection imposes low performance overhead. Often, the unit of data
used for detection is a system call trace, a sequence of all calls invoked by a single process in a
given time window. System calls can be collected, for instance, with the ‘strace‘ Linux utility,
although there are many other ways to collect this same information. Some common calls include
‘open,’ ‘close,’ ‘read,’ ‘write,’ ‘wait,’ ‘exit,’ ‘mmap,’ among many others. The effective use of system
calls within host-based anomaly detection was first proposed by Forrest et. al. [9] with the
following advantages:

• System calls (root processes) are more advantageous than a typical user process
because a system call will have greater access to the system’s resources.

• An operating system will have a finite list of operations, which creates predictable system
call sequences under normal system operations.

Many works on HIDS research focus on the analysis of system call traces. For instance, Haider
et al. [10] proposed using different, but still inexpensive, statistical features on system call traces
of the ADFA-LD dataset, with the same goal of fast performance of transforming data to features

D3.1: Horizontal Planes - first version

© ARCADIAN-IoT Consortium 2021-2024 Page 32 of 74

without sacrificing accuracy of detection. Four features, namely, the least/most repeated and the
minimum/maximum values in a trace, are used to represent a trace to detect attacks, and three
supervised learning algorithms, Support Vector Machine (SVM) with linear and radial basis
kernels and k-Nearest Neighbours, are used.

The processing of system calls for intrusion detection is typically based on payloads as a
sequence of bytes as well as the operation of feature selection via overlying byte tuples, referred
to as N-grams. We are then going to analyse the data exploring the notion of subsequences. N-
grams have been used as models to understand sequence data as well as in predicting a
sequence of events. An n-gram is a short arbitrary length, denoted by the n, subsequence of a
larger sequence. In this context, we can take sub sequences of the system call traces of some
length.

Many datasets are available as open source that tackle system call traces, one is the Australian
Defence Force Academy Linux Dataset (ADFA-LD). This dataset was specifically designed to
address limitations of previously collected datasets such as the DARPA, KDD, and UNM datasets.
In particular, they captured system call traces on a server running a modern operating system
(Linux) with realistic workloads (e.g., web browsing and word processing) and attack sequences
generated via real vulnerabilities in commonly used software. For these reasons, the ADFA-LD
dataset is often used for HIDS research, and previous work has demonstrated that this realism
translates into a much more challenging learning task, suggesting that realistic datasets are vital
for designing systems for practical deployment.

In Table 3 we can see the breakdown for the several types of attacks in the ADFA-LD dataset as
well as the methods used to implement them. The small vulnerabilities were purposefully
engineered into the system to be able to collect the data appropriately.

Table 3. Types of attacks in ADFA-LD.

Attack Name Method
Brute force
Password

FTP by Hydra

Brute force Password SSH by Hydra
Add new superuser Client-side malicious

executable
Java Based Meterpreter Tiki Wiki vulnerability
Linux Meterpreter Client-side malicious

executable
C100 Web shell PHP Remote file Inclusion

Vulnerability

This set of attacks represents what an average attacker may use in an attempt to take advantage
of a system and compromise it. The set ranges from low-level, high-profile brute force attempts
to vulnerabilities within services running on the machine. The use of these attacks will yield traces
that use modern hacking methods.

The first two attack types represent a brute force password guessing attempt on the open FTP
and SSH services. This attack is often a last resort of most attackers due to its large potential to
be caught out on any Intrusion Detection Systems (IDSs). For the next attack, an executable can
be used to create a new user with root privileges. The next two attacks involve Meterpreter - a
command shell with enhanced functionality. The TikiWiki vulnerability allows to unknowingly
upload a copy of Java Meterpreter. Once the program is uploaded it would initiate a reverse TCP
connection to attack the system. Once the command shell is installed, it can have greater access
to changing the configuration of the system, escalating privileges or attempting to access the
shadow password file. The Linux Meterpreter can be uploaded using social engineering and
behaves similarly to the Java Meterpreter. The main difference between the two is the
implementation of the program itself, which could lead to different system call traces. Lastly, the

D3.1: Horizontal Planes - first version

© ARCADIAN-IoT Consortium 2021-2024 Page 33 of 74

C100 Webshell is a sophisticated piece of PHP which allows for remote shell access.

Aside from the datasets related to attack types, the ADFA-LD contains system call “traces” of a
system under a normal operation.

In Figure 9 and Figure 10, we represent the architectures for an end-to-end process for our
approach, which will be developed in parallel to each other. The proposed architectures are: a
centralized (cf. Figure 9) and a decentralized FL-based approach (cf. Figure 10) where each of
the nodes represents an IoT client. The main idea of this approach is to establish a comparison
between the traditional IDS approaches and the federated setting, where the centralized
architecture will serve as baseline.

Figure 9. General Architecture of the centralized FL model.

Figure 10. General Architecture of the decentralized FL model.

In the centralized setting, we will apply the following traditional ML algorithms that according to

D3.1: Horizontal Planes - first version

© ARCADIAN-IoT Consortium 2021-2024 Page 34 of 74

the literature are the most successful: k-Nearest Neighbour, Random Forest, SVM, and Decision
Trees.

For the Federated approach, we propose the FL algorithms that are going to be developed and
evaluated in this scenario. FedAvg [11], as a baseline FL algorithm, FedAvg was chosen to
implement, as it is simple and widely used in FL scenarios. The FedProx [12] algorithm was
proposed as a way to handle the pending issue of heterogeneity, both statistical and between
systems, in federated network scenarios, it could be a good candidate for the pending problem.
This algorithm seeks to provide convergence guarantees when the data used in the learning step
is non-identically distributed, referred to as statistical heterogeneity, and adhere to device-level
constraints by allowing each client (device) in the network to do a variable amount of work,
systems heterogeneity. FedAvg shows tight convergence rates, and it suffers from client-drift
when the training data across devices is heterogeneous (non-IID), this can result in slow
convergence rates. The SCAFFOLD [13] algorithm, (Stochastic Controlled Averaging for
Federated Learning), has a similar objective to FedProx, it uses control variates (variance
reduction) to correct the client-drift in its local updates. And finally, FedDetect [14], the main
difference between FedDetect and FedAvg is the type of model that is used in the training phase.
This algorithm was specifically proposed as a FL method of intrusion detection in IoT. The main
idea of this algorithm is the use of a deep autoencoder as a way to detect anomalies. The deep
autoencoder focuses on the reconstruction of the input data in an unsupervised learning manner.
The autoencoder splits the neural network into two segments: the encoder and the decoder.

3.2.2.2 Evaluation approach

Our approach to evaluate the IoT HIDS will consider a contemporary dataset, ADFA-LD [15]. The
data can be used to train ML models to detect whether there is an attack occurring on the system.
This can be answered by classifying the traces as either normal or abnormal behaviour for a given
system. Since there are only 324 possible system calls within a single trace, due to the operating
system, we can view them as being the attributes of the raw dataset. Additionally, because the
data is used to classify anomalies, we have two classes: anomaly or not.

There are many classification metrics for IDS (o assess the accuracy of the alerts). The first can
be represented by a confusion matrix (Table 4) with the true positives, true negatives, false
positives and false negatives, which can be used for evaluating the performance of an IDS. Each
column of the matrix represents the instances in a predicted class, while each row represents the
instances in an actual class.

Table 4. Confusion Matrix.

 Normal Intrusion

Normal True Negative False Positive

Intrusion False Negative True Positive

Additionally, the performance of the IDS will be measured by the following metrics such as the
accuracy, True Positive Rate, False Positive Rate, False Negative Rate, and the Receiver
Operating Characteristic (ROC). Furthermore, and in particular for the Federated scenario, we
shall also evaluate the number of rounds that it takes to reach a certain level of accuracy.

3.2.3 Future work

The current work of this component involves experimental work and evaluation of ML models in
a completely centralised setting. However, given that this component is closely tied to the
Federated AI component, the next steps also involve the development and experimentation of a
FL IDS prototype with some FL state-of-the-art algorithms, which we aim to achieve in the next
months.

In addition to that we aim to integrate Behaviour Monitoring with the Federated AI component

D3.1: Horizontal Planes - first version

© ARCADIAN-IoT Consortium 2021-2024 Page 35 of 74

from RISE, namely, the Data Rebalancer subcomponent, and also the Device Self Protection
component. This will be followed by the implementation of the rest of the Behaviour Monitoring’s
subcomponents, like the Event Handler, for communication with other ARCADIAN-IoT
components, and Data Extraction subcomponent, for direct extraction and parsing of host’s logs
in real time, Data Preparation subcomponent, for transformation of logs into model inputs, ML
Model Unit subcomponent, for event classification, and implementation of the central model
aggregator for the FL approach.

3.2.4 Current resources

Due to the early stage of development, there are no resources currently available to public. The
source code of the Behaviour Monitoring component will be made available to the public once the
development and evaluation are completed.

D3.1: Horizontal Planes - first version

© ARCADIAN-IoT Consortium 2021-2024 Page 36 of 74

3.3 Cyber Threat Intelligence

The design and development of the Cyber Threat Intelligence component is part of Task 3.4
(Cyber Threat Intelligence for IoT systems) in WP3.

3.3.1 Overview

3.3.1.1 Description

ARCADIAN-IoT intends to provide an instrument to gather, produce, elaborate, and share
information regarding cyber threats and attacks in the IoT domain where end devices might be
critically affected. The threat information is generally presented as Indicator of Compromise (IoC),
and it can be shared between various partners to detect similar attacks in other organizations, or
directly used to detect and analyse new security incidents.

RISE is building up an IoT-specific Cyber Threat Intelligence (CTI) system based on Malware
Information Sharing Platform (MISP),8 an open-source threat sharing platform, to orchestrate the
process of (i) information parsing, formatting, and sharing, (ii) generation of IoCs, and (iii) fetching
feeds to CTI. Although MISP already provides a bunch of useful functionalities to administrate
cyber threat data, there are still some critical features missing, such as, IoC quality control, access
control, and automatization which would be useful in IoT environments. Understanding the
quality/reliability and timeliness of IoCs, having an appropriate level of contextualization in
different organizations are challenging tasks. Thus, essential robust mechanisms are needed.
Additionally, exploiting the Federated AI Component (Section 2.2), ML-based models will enable
the sharing of IoCs among multiple instances in a privacy-preserving manner. CTI platform will
enable the direct use of IoCs for anomaly detection, intrusion detection and prevention, and
designing of novel protection mechanisms.

An IoT-specific CTI is responsible for collecting, processing, and sharing IoCs regarding to cyber
threat within IoT network. Different features have been identified as needed for the essential
functionalities to meet the use case requirements in ARCADIAN-IoT.

Figure 11. The architecture of CTI.

Figure 11 shows the architecture of CTI which consists of the MISP core, IoT IDS event parsing
and formatting, IoC aggregation, and ML model manager. Each subcomponent is in charge of
different tasks.

8 https://www.misp-project.org/

https://www.misp-project.org/

D3.1: Horizontal Planes - first version

© ARCADIAN-IoT Consortium 2021-2024 Page 37 of 74

• MISP core: It is the CTI engine that provides primary features of threat data gathering and
sharing. It also includes extensive functionalities for automation and management.

• IoT IDS event parsing and formatting: It is the subcomponent that aggregates and
analyses IDS events from devices in the IoT network to generate and share IoT-specific
IoCs. Because traditional standards for cyber threat information (e.g., STIX, TAXII,9 etc.)
requires formats which are too heavy for resource-constrained IoT devices, we aim to
develop a lightweight format and protocol that are suitable for communication of IoT-
specific IoCs.

• IoC aggregation: It is responsible for the aggregation and pre-processing of existing IoT-
specific vulnerability databases. It transfers the vulnerable information into IoC format and
import them to MISP.

• ML model manager: It integrates the functionalities provided by the Federated AI
component into the CTI which will enable privacy preservation while sharing threat
information or trained models with third parties.

3.3.1.2 Requirements

A recall of the high-level requirements that have been previously defined and provided in
deliverable D2.4 [2] is given below.

Requirement 3.3.1 – Threat data collection: The CTI should be able to collect threat data from
various sources, local and internal sources (wide variety of various sources).

Requirement 3.3.2 – Private information: The CTI may need to share information about
compromises; Local intelligence in application to not disclose sensitive/confidential information
belonging to users or company.

Requirement 3.3.3 – Indicators of Compromise: The CTI should support Indicator of Compromise
(IoC) generation and sharing by any participating IoT or edge device.

3.3.1.3 Objectives and KPIs

The aim of the ARCADIAN-IoT project is provide a MISP-based CTI platform focused on IoT-
specific threat intelligence. With the aim of fulfilling the project’s objectives, the CTI will be
evaluated against the following KPIs:

• Support the common IoC sources (Opensource Intelligence, e.g., Shodan, social
networks, and dark/deep networks).

• Support the common Intelligence formats (e.g., TAXII, STIX, CyBOX,10 IODEF [16],
OTX,11 etc.).

• Enable that at least two stakeholders can receive shared data of threats/compromises.

• Promote sharing of IoT threat data in EU, respecting privacy and data regulations.

• Enable a novel automated and privacy-preserved CTI approach exploiting the European
MISP platform (MISP4IoT).

All these KPIs are related to the main project objective “Enable proactive information sharing for
trustable Cyber Threat Intelligence and IoT Security Observatory” (as recalled in Introduction).

9 https://oasis-open.github.io/cti-documentation/
10 https://cyboxproject.github.io/
11 https://otx.alienvault.com/

https://oasis-open.github.io/cti-documentation/
https://cyboxproject.github.io/
https://otx.alienvault.com/

D3.1: Horizontal Planes - first version

© ARCADIAN-IoT Consortium 2021-2024 Page 38 of 74

3.3.2 Technology research

3.3.2.1 Technical findings and achievements

Despite technologies, tools, and best practices for threat data sharing are quite consolidated,
automated processing of CTI platforms is an area where research is still advancing, especially in
sectors including critical services, such as healthcare, banking, energy, and transportation. Along
with the growth of IoT, several ongoing projects and standardization activities are working on new
lightweight IoT security protocols, secure connectivity of IoT with cloud backend, distributed trust
in IT, etc. However, CTI focused on IoT is a relatively immature discipline; in fact, most current
CTI platforms focus on standard internet hosts.

In current reporting period, RISE has focused on launching MISP core and configuring it to meet
requirements for different use cases. The main contributions in this task can be summarized as
follows:

• Launched and configured MISP in RISE Cyber Range for the future exploit.

• Defined architectural details of the ARCADIAN-IoT CTI component and its
subcomponents requirements.

• Implemented a set of extended functionalities for MISP core including automatic
event/attribute fetching, updating, and searching.

In MISP, the structure of shared information is well-defined. The terminology in MISP can briefly
be categorized into two classes: data layer and context layer. The former includes all the terms
related to how the information is defined in MISP; the latter includes the terms referred to the
relationship between different clusters of information. In details, the data layer contains:

• Event: The encapsulation for contextually linked information represented as attribute and
object

• Attribute: The individual data points, which can be indicators or supporting data

• Object: The custom template for attributes

• Object reference: The relationship between other building blocks

• Sighting: The time specific occurrences of a given data-point detected.

And the context layer includes:

• Tags: The labels attacked to events/attributes from taxonomies

• Galaxy-clusters: The knowledge base item used to label events/attributes and come from
Galaxy

• Cluster relationship: The relationship between Galaxy clusters.

The IoC, which is a piece of information that helps Intrusion Prevention/Detection Systems and
their administrators to detect suspicious or malicious cyber activities, can be generated based on
this data structure. IoC usually involves different attributes related to the object of an event, and
it can be represented as network indicator (e.g., IP address), system indicator (e.g., string in
memory), or bank account detail. However, there are no events, attributes, and objects yet
specifically designed for IoT contexts. By analysing the three project domains and their specific
requirements, we are able to define a uniform set of IoT-specific events, attributes, objects to
include in IoT-specific IoCs.

The MISP platform includes three main roles in MISP in the management process: the general
administrator, organization administrator, and publisher. CTI platform setup will include three
different instances in three distinct locations controlled by RISE, IPN, and Truphone (TRU). In our
current setup, RISE takes the role of general administrator, while IPN and TRU will be granted
with organization administrator credentials in a second stage. The general administrator has the

D3.1: Horizontal Planes - first version

© ARCADIAN-IoT Consortium 2021-2024 Page 39 of 74

highest authority to manage all the collected threat data and is in charge of monitoring how the
information is being shared. Organization administrators have the authority to manage
organizational threat events.

Through the MISP platform, a user can manually insert, edit, delete, and search for events or
objects. Users also can define how to share the information by selecting one of multiple
approaches provided by MISP, e.g., a user may define the profile of the organizations with which
the information will be shared and the sharing time frame. The information included in the shared
IoCs is constrained by the IoT-specific context and fulfils the requirement of threat data required
by other components in the framework (MISP4IoT). MISP platform has been extended with
automatic control functionalities (e.g., automatic insert, edit, delete, search). For example, we
provide an API for automatic creation of threat events when an IDS event is raised by the
flow/Behaviour Monitoring component.

The new functionalities have been implemented in Python by utilizing PyMISP library. PyMISP
provides essential REST APIs to access to MISP platform. It allows us to develop automatic-
control functions of MISP, and these functions are essential for future exploitation of the others
subcomponents in CTI platform. Through these functions, the threat data can be automatically
added, updated, deleted. The necessary information includes CTI platform’s IP address, the
content of attributes to the defined object, and the authorized key, and some additional
parameters (e.g., threat level, distribution, IDS flag, etc.).

Besides the implementation, we have investigated the most suitable data formats and
communication protocols for IoT domains. Starting from the well-known language and
serialization format STIX (Structured Threat Information Expression), which is an open-source
format and integrates well with MISP for exchanging CTI data, we aim to implement a simplified
and lightweight version of it to exchange threat data within IoT domains. This format helps us
easily contributing to and consuming from the CTI platform as all dimensions of suspicion,
compromise, and attribution can be emphasized with descriptive relations along with the object
identifiers. It is presented as JSON, which is a machine-readable format, and it can be visualized
in a graphical representation. On the other hand, we exploit the TAXII (Trusted Automated
Sharing of Intelligence Information) protocol, which was designed to support STIX, in order to
tailor the methods used for sharing cyber threat information in the three ARCADIAN-IoT domains.

3.3.2.2 Evaluation approach

The current prototype is regarded as a preliminary step towards the integration with other
components in the ARCADIAN-IoT framework. The evaluation metrics are aligned with the
purpose of KPIs and aim at defining which and how many IoT-specific threats the CTI platform
can handle, how many IoT protocols/technologies can be supported, and how many
organization/stakeholders contributes to the information sharing via the platform. In addition, we
will evaluate the component based on users’ experience; after finalizing the prototype, we will
conduct utilization surveys or questionnaires to obtain feedbacks from stakeholders. These
feedbacks will help us in the cyclic research process of a continuous improvement of design and
development.

3.3.3 Future work

Future work, which will be reflected into deliverable D3.2, will focus on the following: (i) Definition
of custom IoC structure specifically for IoT cyber threats, (ii) Development of lightweight IoC
format and protocol based on STIX and TAXII for IoT scenarios, and (iii) Development of the IoC
aggregator for external resources. Integration and deployment of the Federated AI component
and its subcomponents into the CTI will be performed in the last period of the project and reported
in deliverable D3.3, along with the performance evaluation.

TRU will join the efforts of this component by bringing into the consortium the expert knowledge
of their CSIRT (Computer Security Incident Response Team), who will have a node of the CTI

D3.1: Horizontal Planes - first version

© ARCADIAN-IoT Consortium 2021-2024 Page 40 of 74

platform running on its premises to monitor and analyse any relevant threats.

3.3.4 Current resources

Due to the early stage of development, there are no resources currently available to public. The
source code of the extended functionalities of the MISP core will be made available once all the
evaluations are completed.

D3.1: Horizontal Planes - first version

© ARCADIAN-IoT Consortium 2021-2024 Page 41 of 74

3.4 Network Self-protection

The design and development of the Network Self-protection component is part of Task 3.5 (Self-
healing and self-protection for IoT systems) in WP3.

3.4.1 Overview

3.4.1.1 Description

This component is responsible for providing the self-protection features required by the
ARCADIAN-IoT framework. The component has to enforce a set of protection rules into the data
plane with the aim of safeguarding the network infrastructure, the IoT devices, and services
against volumetric DDoS. For this purpose, the component is hooked into the data plane providing
a programmable enabler able to enforce security policies by means of protection rules. These
capabilities are provided by the OpenVSwitch (OVS) Data Security Controller (DSC). The
implementation is based on the well-known virtual switch OVS on which the UWS team is carrying
out significant extensions and upgrades to support an enhanced programmability of the data
plane to meet the expected requirements of the project. Thus, the component is being designed
and implemented to cope with different data paths and network protocols related to IoT networks,
overlay networks, or any other type of network involved in the ARCADIAN-IoT project.

This component, in cooperation with the Network Flow Monitoring (Subsection 3.1) and the
Network Self-healing (Subsection 3.6) components, performs an autonomous cognitive loop able
to detect and mitigate known cyber attacks (volumetric DDoS attacks). First, the Network Flow
Monitoring detects the attack and raises an alert. This alert is received by the Network Self-healing
that determines what action or set of actions execute to stop the attack (which rule(s) to enforce
in the data plane and where in the network topology they will be inserted). Finally, the Network
Self-protection is responsible for executing such self-healing rules in the data plane and thus,
stop de attack and restore the network traffic back to pre-attack performance. The component
architecture is composed of three main subcomponents. Figure 12 provides an overview of the
Network Self-protection architecture. The functionality of the subcomponents is briefly described
as follows:

• The self-management capabilities are achieved by the OVS Protection Decider (PD)
which is in charge of deciding on every instant what subset of rules from the complete set
of protection rules located into the PD will be enforced in the OVS DSC by creating an
autonomous control loop to perform self-optimization of the protectional capabilities and
thus achieving large scalability, really needed to deal with security on IoT networks. The
PD is continuously monitoring the behaviour of the DSC in order to optimise its
performance.

• The OpenVswitch Datapath Security Controller (OVS DSC) is the subcomponent that
processes the network traffic and thus eventually enforces the protection rules into the
data plane. Every packet through the data plane is deep inspected and classified, and an
action is taken based on the subset of protection rules active at the moment. If a packet
does not match any rule, it is sent to the PD subcomponent so the subset of protection
rules kept in the DSC tables can be updated.

• Finally, the third subcomponent is the Protection Control Agent (PCA). It is responsible
of providing a North Bound Interface (NBI) for the communication with the Network Self-
healing component. The exposed NBI is an intend-based interface receiving technology-
independent instructions that are translated into technology dependant commands to be
enforced in the data plane. The PCA subcomponent allows a dynamic management of the
life cycle of the set of protection rules in the self-management system: installation,
modification, and deletion.

D3.1: Horizontal Planes - first version

© ARCADIAN-IoT Consortium 2021-2024 Page 42 of 74

Figure 12. Network Self-protection architecture.

3.4.1.2 Requirements

A recall of the high-level requirement that has been previously defined and provided in deliverable
D2.4 [2] is given below.

Requirement 3.4.1 – Mitigate Attack against IoT Overlay Networks: The Network Self-protection
component will be deployed in the Edge and Core segments of the ARCADIAN-IoT infrastructure.
In these segments, network traffic sent by IoT devices and sensors may be processed and
encapsulated in overlay networks to guarantee user mobility and isolation between different
tenants or users sharing the same physical infrastructure. Therefore, this component must be
able to deal with overlay traffic and to identify the traffic from any IoT device regardless the number
and types of encapsulation headers.

3.4.1.3 Objectives and KPIs

The aim of this component is to provide the Network Self-protection capabilities into the
ARCADIAN-IoT framework. With the aim of fulfilling the project’s objectives, the following KPIs
will be used to assess and validate the performance of the Network Self-protection component:

• Recovery at least 95% of the system functionality prior to anomalous behaviour.

• Support coordination of recovery to pre-defined trust levels.

• Reduce human intervention to the strictly required, in healing and recovery procedures.

All these KPIs are related to the main project objective “Self and coordinated healing with reduced
human intervention” (as recalled in Introduction). Thus, this component will further contribute to
mitigate and reduce the number of cyber incidents involving IoT devices.

3.4.2 Technology research

3.4.2.1 Technical findings and achievements

As a first step to the design and prototyping of the component, the following features have been
identified as needed for the Network Self-protection component to meet the functionality and use
cases requirements expected in the project:

D3.1: Horizontal Planes - first version

© ARCADIAN-IoT Consortium 2021-2024 Page 43 of 74

• A Programmable Data Plane agent able to enforce dynamically security policies to
mitigate known DDoS attacks in real time.

• Providing support for protection rules into IoT networks, overlay networks, and any other
ARCADIAN-IoT related networks.

• Large scalability to deal with a vast number of IoT devices expected in 5G networks and
the ARCADIAN-IoT use cases.

After a comparative analysis of the existing state-of-the-art software data paths, such as DPDK,
XDP (eXpress Data Path) or OVS just to mention a few, OVS has been chosen as baseline for
the implementation of the Network Self-protection component. The main reasons motivating this
decision are the following:

• OVS is an open-source platform supported by a community workgroup keeping it in
continuous development.

• It is a well-known software switch widely used in Software Defined Networks (SDNs) and
virtualized networks where it is considered the de-facto standard.

• OVS provides a programmable OpenFlow NBI.

• It is widely used for frameworks such as OpenStack.

• Robustness and satisfactory performance.

The Network Self-protection component is being implemented on OVS version 2.16.212 which can
run on Linux kernels from 3.16 to 5.8. We use the latest OpenFlow specification (version 1.5.1
released in 2015) [17].

The development of the Network Self-protection component involves a significant extension of
the OVS base architecture and functionality aimed at fulfilling the requirements of the project. The
following items have been identified during the design stage as extensions to be implemented in
the OVS architecture:

1. Novel traffic classifier extended from traditional traffic classification for IP networks to a
more complex classifier able to deal with all data paths expected in 5G IoT infrastructures
such as overlay traffic with several levels of nested encapsulation.

2. Increase the expressiveness of the OpenFlow tables managed by the PD subcomponent
with new fields providing a flexible, fine-grained flow definition fitting with the new fields
extracted by the novel 5G IoT traffic classifier.

3. OpenFlow protocol extension aligned with 1) and 2) to provide a flexible fine-grained flow
definition, enhanced control, and extended programmability to the Network Self-healing
component.

4. Extension of the OVS OpenFlow NBI (ofproto library) functionality with the OpenFlow
protocol extensions described in 3) allowing the PD to send and receive extended
OpenFlow messages from the PCA.

5. Extension of the Netlink API for the inter-process communication between the Datapath
Security Controller in kernel space and the PD in user space.

6. Upgrading of command line application suite included in the OVS distribution with the new
capabilities to allow programmability via command line as an alternative method to Open
Flow sockets.

The overall view of the Network Self-protection architecture designed by UWS is provided in
Figure 12, which highlights the three main subcomponents integrating the functionalities

12 https://www.openvswitch.org/

https://www.openvswitch.org/

D3.1: Horizontal Planes - first version

© ARCADIAN-IoT Consortium 2021-2024 Page 44 of 74

previously described: PCA, PD and Datapath Security Controller. Similarly, the internal and
external interfaces are shown in the figure (a functional description of the interfaces is available
in deliverable D2.5 [18]).

3.4.2.2 Evaluation approach

Following the prototyping, the overall behaviour of the Network Self-protection component will be
empirically tested as a preliminary step towards the integration with the rest of the architectural
components composing the Horizontal Planes of the ARCADIAN-IoT framework. The tests will
be carried out in the cloud data centre at the UWS premises and will be focused on two aspects:
functional validation and overall performance.

Regarding functionality, it will be empirically verified that the component is able to effectively
enforce in the data plane the set of healing actions sent by the Network Self-healing component.
The purpose of these actions is to stop malicious traffic coming from DDoS attacks previously
detected by the Network Flow Monitoring component.

Regarding performance, the following features will be evaluated to demonstrate the suitability of
the component for its integration into a 5G IoT architecture such as the one defined in ARCADIAN-
IoT:

• Scalability: Maximum number of IoT devices traffic simultaneously managed.

• Bandwidth: Maximum data rate that the component is able to deal with.

• Classifier overhead: Comparative of the extra overhead introduced when processing
different profiles of complex traffic (overlay networks with different number of nested
headers).

• Delay: Average time to process each packet. That is, the time required to classify the
packet and take a decision based on the current protection rule set enforced in the data
plane. The default actions may be:

o To drop traffic if it is identified as malicious traffic.

o To process the packets according to the routing tables in the case of traffic labelled as
legitimate.

Any other kind of actions could be considered for the harmful traffic such as mirroring,
redirecting to a Honeynet, sending to the SDN controller, etc.

Concerning the type of experiments executed, the component will be stressed against several
challenging scenarios with different traffic profiles ranging several parameters:

• Packet size

• Number of IoT devices sending traffic

• Tx Bandwidth per IoT device

• Number and type of headers for tunnelling and overlay networks.

3.4.3 Future work

Currently the UWS team is engaged in the implementation of a functional prototype. A first version
of this prototype will be available during the second year of the project.

After prototyping and as a last step in the development of the component, the prototype will be
empirically validated and evaluated (as described in previous Subsection). Hence, a last version
of the prototype will be provided in deliverable D3.2 and an empirical validation and evaluation of
the overall performance of this component will be reported in deliverable D3.3. Finally, this
component will be integrated in the ARCADIAN-IoT architecture, where it will interact with different
architectural components. The major integration work will be undertaken with the Network Self-

D3.1: Horizontal Planes - first version

© ARCADIAN-IoT Consortium 2021-2024 Page 45 of 74

healing and the Network Flow Monitoring components. These three components will cooperate
to provide an autonomous cognitive self-healing loop in the network: The Network Flow Monitoring
detects the attack and raises an alert; the Network Self-healing decides what action to take to
stop and mitigate the attack and the Network Self-protection enforces the action in the data plane.

3.4.4 Current resources

Due to the application of IPR safeguarding measures, UWS has not the intention to make any
release of the source code for this component and thus it will not be made available in any public
or private repository or server outside of our premises. For integration purposes, a functional
prototype of the Network Self-protection component will be released for the ARCADIAN-IoT
consortium.

D3.1: Horizontal Planes - first version

© ARCADIAN-IoT Consortium 2021-2024 Page 46 of 74

3.5 IoT Device Self-protection

The design and development of the IoT Device Self-protection component is part of Task 3.5
(Self-healing and self-protection for IoT systems) in WP3.

3.5.1 Overview

3.5.1.1 Description

The IoT Self-protection component is responsible for providing protection at the IoT device level.
This component enforces policies and protection rules to protect devices against attacks,
preventing intrusions and other malicious threats from compromising the devices. To achieve this
goal, IPN is building a solution that acts and protects the IoT devices based on threat information
received in by other ARCADIAN-IoT components, such as the Behaviour Monitoring and CTI.
Notwithstanding, this component is also able to enable self-protection mechanisms via self-
imposed policies (e.g., loss of communication with other components).

An alternative approach for IoT device protection mechanism, will be pursued via eSIM-based
device protection actions.13

Figure 13 depicts the components’ internal modules – Event Handler, Policy Enforcer, and Self-
protection policies – and its external interfaces. There are two main inputs: one with IDS events,
from the Behaviour Monitoring components, and another with Indicators of Compromise from the
CTI. In situations where the self-protection component enables significant self-protection
measures, the self-recovery component is dully notified so that the device recovery process can
be initiated – this is the only output of the component.

Figure 13. IoT Device Self-protection.

For each threat or malicious behaviour detected, the policy enforcer will act based on the policies
locally stored (on the self-protection policies storage). The policy storage design enables policies
updates (e.g., new policies or updated rules) whenever new threats are identified or for update
and maintenance purposes. On the other hand, the event handler processes all incoming and
outgoing events.

3.5.1.2 Requirements

A recall of the high-level requirements that have been previously defined and provided in
deliverable D2.4 [2] is given below.

Requirement 3.5.1 – Heartbeat monitoring mechanisms towards ARCADIAN-IoT framework

13 Details removed for potential future IPR protection measures.

D3.1: Horizontal Planes - first version

© ARCADIAN-IoT Consortium 2021-2024 Page 47 of 74

should be implemented: The control over the traffic should provide the definition of
protection/mitigation rules of IoT network infrastructures.

Requirement 3.5.2 – Device should allow at least one type of adaptive settings (e.g., dynamic
configuration, rule enforcement, permission granting/revoking): The control over the traffic should
provide the definition of protection/mitigation rules of IoT network infrastructures.

Requirement 3.5.3 – Device should provide administrative privileges to Self-protection
component: The control over the traffic should provide the definition of protection/mitigation rules
of IoT network infrastructures.

Requirement 3.5.4 – Device should be able to periodically obtain up-to-date classification of
applications and services (e.g., from reputation system or CTI): The control over the traffic should
provide the definition of protection/mitigation rules of IoT network infrastructures.

3.5.1.3 Objectives and KPIs

With the aim of fulfilling the project’s objectives, the following KPIs were defined to assess and
evaluate the performance of the IoT Device Self-Protection component:

• Provide at least two self-protection mechanisms (e.g., policy change, rule enforcement)
for the supported devices.

• Support at least one self-protection mechanism (e.g., data encryption, policy change, rule
enforcement) for scenarios with no connectivity.

All these KPIs are related to the main project objective “Self and coordinated healing with reduced
human intervention” (as recalled in Introduction).

3.5.2 Technology research

3.5.2.1 Technical findings and achievements

The research work carried out within the scope of the IoT Device Self-protection component
focused on analysing methodologies applied in related systems, in order to guarantee the
protection of devices and data.

The state-of-the-art analysis has allowed us to define the most suitable approach for developing
the proposed device self-protection solution. Specifically, the outcomes of this study, enabled the
definition of: (i) an architecture representation suited for IoT Device Self-protection mechanisms;
(ii) the target attack types and respective mitigation measures; (iii) a set of risk levels associated
to different threats; and (iv) the proposition of eSIM actions as additional self-protection measures.

The following subsections describe each of the aforementioned aspects. The next section
provides an overview of the reference architecture that the IoT Device Self-protection follows.

3.5.2.1.1 MAPE-K architecture

One of the known architectures that relates the most to self-protection mechanisms is the MAPE-
K architecture [19,20]. The IoT Device Self-protection component will follow this approach and its
subcomponents will directly represent MAPE-K architectural blocks. MAPE-K represents a cycle
composed of five blocks: (i) monitor, (ii) analyse, (iii) plan, (iv) execute, and (v) knowledge. Each
of the blocks has a specific role in threat detection. The roles can be described as follows:

• Monitor: Collects data from the software system as well as its execution environment.

• Analyse: Analyses the data gathered by the Monitor to see whether any variations related
to self-protection have happened.

• Plan: Defines which system adjustments should be done to address the Analyzer's
variances; Identifies the set of procedures or strategies that should be used in the system.

• Execute: Applies the changes identified by the Plan block in the system.

D3.1: Horizontal Planes - first version

© ARCADIAN-IoT Consortium 2021-2024 Page 48 of 74

Knowledge: Provides information useful for self-protection, such as filtered data from the Monitor,
statistical data, and self-protection strategies used in past incidents.

Figure 14 depicts MAPE-K cyclic architecture and its 5 blocks. The device is a central aspect of
this architecture as it directly interacts with the first and last blocks of the architecture. The self-
protection component is positioned in the blocks corresponding to the planning, execution, and
knowledge. The planning block is built upon knowledge that is represented by self-protection
policies. The execute block corresponds to the actions of the policy enforcer (i.e., a
subcomponent of the IoT Device Self-protection). The monitor and the analyse blocks are
assigned to the Behaviour Monitoring and CTI components, which are responsible for monitoring
and analysing threats.

Figure 14. MAPE-K architecture flow representation.

3.5.2.1.2 Attack types and mitigation approaches

The IoT Device Self-protection component relies on Behaviour monitoring and CTI components
to detect most device intrusions. The IoCs generated by the CTI platform will provide information
associated to the event in question. As previously described, the Behaviour Monitoring will detect
some attacks and the IoT Device Self-protection component will act in order to trigger self-
protection mechanisms in order to mitigate or avoid the attacks. Some examples of attack types
for which the IoT Device Self-protection component will provide mitigation measures are:

• Password Brute Force

• Add a new superuser (Client-side malicious executable)

• Code Injection (services running on devices)

• Authentication anomalies.

For such kind of attacks, it is possible to set up protection measures that mitigate or minimize the
damage caused by such threats. The research carried out has allowed us to target, at least, the
following mitigation measures:

• Close network ports to prevent intruders from entering

• Log out, suspend, or disable applications that are being threatened

• Use Two-Factor Authentication when the user's identity may be at stake

• Disable Root SSH Logins

D3.1: Horizontal Planes - first version

© ARCADIAN-IoT Consortium 2021-2024 Page 49 of 74

• Use an allow list to limit access to specific Apps

• Notify users when suspicious device behaviour is detected.

In the coming months, it will be necessary to carry on with the work related to the mitigation of
some threats. Furthermore, it will be necessary to further analyse the MISP taxonomy (described
in Subsection 3.3), in order to implement a seamless and standardized way of communication
between the CTI platform and the IoT Device Self-protection component.

3.5.2.1.3 Risk levels

Another aspect established during the research phase was the need to define appropriate security
risk levels for various kinds of events, in the scope of cyber security risk management. In a
proposal defined by Raibulet, C. et al. [21], it is possible to observe an example for the case of a
home banking application (as shown in Figure 15). For several types of tasks, there are various
levels of risk. As the risk increases, each of these risk levels presents an extra layer of security.
In case a suspicious action (such as a high number of login attempts) is detected, the risk level
for that action, and that particular account, is increased because it could mean the possibility of a
brute force attack.

Figure 15. Risk Levels – C. Raibulet et al.

For the IoT Device Self-protection component, this approach will be applied in a similar fashion.
In case of threats where there is already prior knowledge of how to mitigate them, concrete and
targeted actions will be defined (in self-protection policies) and applied according to the respective
risk levels. Nevertheless, for threats or actions that are not yet documented or addressed (in the
component's policy set), a differentiated parameter must be defined in order to indicate the threat
level of such suspicious actions. In this way, it will be possible to devise a global response that
aims to mitigate or minimize threats, regardless of the type of suspicious activity detected by the
other components of the Arcadian IoT framework (e.g., device Behaviour Monitoring). The IoT
Device Self-protection component's risk levels are still under formalization. This process
considers the identification of the most relevant behaviours and actions on the devices which will
then allow the formal definition of the risk levels and respective mitigation measures to apply at
each of these levels.

3.5.2.1.4 Policy containers

To determine what kind of protection measures to apply to threats/intrusions reported to the IoT
Device Self-protection component, it is necessary to structure specific actions in the form of self-
protection policies. These policies should not only be lightweight but also adequately defined,
interpretable, and accessible. It is possible to reach such goal by placing the self-protection
policies in a database or in a file accessible to the component. In an IoT device - with limited
computational resources - a structured file is the most efficient approach. Read and write file
operations are fast and easy and do not require a database instantiation. These files will be
structured in JSON, allowing structured loading of the protection policies, and enabling seamless
updates of the protection policies.

D3.1: Horizontal Planes - first version

© ARCADIAN-IoT Consortium 2021-2024 Page 50 of 74

3.5.2.1.5 eSIM role in device self-protection

Regarding the research on the participation of eSIM for device self-protection, the current results
are the formulation of hypothesis for the use of the secure element, which has an ARCADIAN-
IoT eSIM profile, and computational and storage capacity. Figure 16 depicts the specificity of the
hypothetical vision formulated. The network authorization component is planned to receive the
devices trustworthiness level and the related authorization policies from the reputation system
component. When a device trustworthiness is reduced to a level that determines that it is
compromised (policies and levels to be defined within the reputation system research), it
distributes the trustworthiness information to the device secure element. ARCADIAN-IoT eSIM
profile should be ready to receive this information and to perform automatic specific protection
actions with it.14 The communication happens securely, using over-the-air services accredited by
GSMA-SAS.15

Figure 16. eSIM at device self-protection.

eSIM participation in IoT Device Self-protection adds a novel security ability that allows to have
protection actions even when a device is non cooperative. For this we consider that the secure
element is not only independent from the device itself (has its storage and processing unit with
hardware isolation), but also has extremely secure communication channels with secure network
servers that are able to inform it of the device trustworthiness. eSIM particular security actions
were removed purposely for allowing future IPR protection but are planned to be delivered and
demonstrated within the ARCADIAN-IoT context.

3.5.2.2 Evaluation approach

The evaluation of the IoT Device Self-protection component will consider various stages. For the
first stage, it concerns communication and policy enforcing actions. As there is a great
dependence on other components that will communicate intrusions and other suspicious
behaviours (Behaviour Monitoring and CTI components) it is necessary to simulate the sending
of intrusion detection events, or IoCs under at least the following circumstances: (i) normal device
functionality; (ii) abnormal device functionality (i.e., not able to receive communications from the
Behaviour Monitoring component running in the same device); (iii) no connectivity (no messages
from the CTI platform and no interaction with eSIM network authorization service; and (iv)
abnormal functionality and no connectivity.

It is necessary to test the policy enforcer subcomponent and the correct execution of protection
policies under such scenarios and considering the different kinds of events and IoCs received. It
is essential to simulate an actual attack and assess the efficacy of the self-protection actions
applied by the component. The details are of such experimental setup are to be defined at a later

14 Specific processes removed for allowing IPR protection measures.
15 https://www.gsma.com/security/security-accreditation-scheme/

https://www.gsma.com/security/security-accreditation-scheme/

D3.1: Horizontal Planes - first version

© ARCADIAN-IoT Consortium 2021-2024 Page 51 of 74

stage.

To further evaluate this component, it is also necessary to simulate the environment where this
system will work. This will require the creation of an emulator that meets the hardware and
software requirements for ARCADIAN-IoT compliant devices. This evaluation will be carried out
on real devices under ARCADIAN-IoT domains (e.g., emergency and vigilance or medical IoT).

Finally, black-box tests will be performed, in which the intended behaviour will be compared to
the expected outcome at the end of the execution. This must result from the response given by
the Policy Enforcer to the threats found on the devices and must match the policy designated in
the document.

3.5.3 Future work

After the research and approach definition carried out so far, the next step is to actively engage
in experimental work towards the first functional prototype of the IoT Device Self-protection
component. It will be necessary to configure the Event Handler subcomponent to start receiving
messages from the Behaviour Monitoring and CTI components about intrusions and threats. In
addition, a first version of the Policy Enforcer will be implemented, verifying which is the most
appropriate policy from the self-protection policies document. This subcomponent will also be
able to apply the corresponding response on the device to resolve the threats reported by
Behaviour Monitoring and the CTI components.

We aim to provide the first functional prototype of this component in deliverable D3.2. It is
anticipated to have limited functionality. Nevertheless, it should be able to apply a set of protection
policies based on intrusions detected by the Behaviour Monitoring component. The last version
of this component will be provided in deliverable D3.3. This version will applicate all the planned
self-protection policies and the communication with the Self-Recovery component.

The eSIM technologies for IoT Device Self-protection are dependent on the network authorization
component and the reputation system research. Therefore, future work will surely involve
research collaboration with the related technical partners, namely IPN and UC. The eSIM
technology for IoT Device Self-protection is expected to have the first functional prototypes
delivered in D3.2. At a later stage, deliverable D3.3 will include the prototypes enhancement
according to an evaluation done after D3.2.

3.5.4 Current resources

Due to the early stage of development, there are no resources currently available to public. The
source code of the self-protection component will be made available to the public once all the
evaluations are completed.

D3.1: Horizontal Planes - first version

© ARCADIAN-IoT Consortium 2021-2024 Page 52 of 74

3.6 Network Self-healing

The design and development of the Network Self-healing component is part of Task 3.5 (Self-
healing and self-protection for IoT systems) in WP3.

3.6.1 Overview

3.6.1.1 Description

Within the scope of the ARCADIAN-IoT project, UWS is developing the Network Self-healing
component. This component is designed to mitigate the potential impact of a cyber attack when
protection rules for that kind of cyber attacks are not installed in the system (e.g., Firewall rules
not installed) and thus the attack has the potential to penetrate the concerned IoT infrastructure.

To this end, the Network Self-healing component in ARCANDIAN-IoT will be based on an
autonomous loop, where the following components and subcomponents are involved (see Figure
17):

• First, the Network Flow Monitoring component (Section 3.1) will provide the sensing and
detection capabilities of a cyber attack such as DDoS. This will allow to detect the cyber
attack.

• Second, the subcomponent Resource Inventory Agent (RIA) will perform the periodical
reporting of the IoT network infrastructure with the intention to allow an effective self-
healing decision-making process using the topological information.

• Third, the subcomponent Self-Healing Decision Manager (SHDM) will be in charge of
determining what is the best plan to heal the network against that type of cyber attack,
including advanced intelligence aspect related to the device on where to stop the attack,
the interface inside of such device and the sense of the communication flow passing for
such interface, to inform about what is the best effective way to perform the healing of the
network and also to send such information to the associated self-protection component;

• Finally, the fourth component is the Network Self-protection component (Section 3.4)
that will execute the mitigation of the attack, and finally deploying the necessary
countermeasures to enforce the mitigation actions (e.g., traffic blocking/dropping, traffic
mirroring, etc.).

Figure 17. Architecture of the Network Self-healing component.

D3.1: Horizontal Planes - first version

© ARCADIAN-IoT Consortium 2021-2024 Page 53 of 74

3.6.1.2 Requirements

A recall of the high-level requirement that has been previously defined and provided in deliverable
D2.4 [2] is given below.

Requirement 3.6.1 – Distributed Healing: The Network Self-healing component will be able to
perform protection/healing rules in a distributed way according to the topological information
gathered from the infrastructure with the main intention to heal/protect the network against DDoS
attacks.

3.6.1.3 Objectives and KPIs

With the aim of fulfilling the project’s objectives, the Network Self-healing component will be
evaluated against the following KPIs:

• Take the adequate decisions to stop an attack of up to 4096 IoT devices sending a
combined bandwidth of 10 Gbps of malicious traffic in less than 20 seconds.

• Take the adequate decisions to stop an attack of up to 2048 IoT devices sending a
combined bandwidth of 25 Gbps of malicious traffic in less than 20 seconds.

• Be suitable for deployment on the Edge and Core segments of the infrastructure as well

as on dedicated management servers.

• Support at least 4 encapsulation and tunnelling protocols widely used in overlay networks
inherent to 4G/5G IoT mobile infrastructures such as VXLAN, GRE, GENEVE or GTP, for
instance.

• Recovery at least 95% of the system functionalities prior to anomalous behaviour.

• Support coordination of recovery to pre-defined trust levels.

• Reduce human intervention to the strictly required, in healing and recovery procedures.

All these KPIs are related to the main project objective “Self and coordinated healing with reduced
human intervention” (as recalled in Introduction).

3.6.2 Technology research

3.6.2.1 Technical findings and achievements

The research carried out by UWS until this point has unveiled that the closest state of the art
associated to the Network Self-healing component is the one related to Intrusion Prevention
Systems (IPSs). These systems usually perform autonomous inspection of traffic and enforcing
of rules to heal and protect the network if there is a cyber attack. Main problems with these tools
are:

• They are traditionally designed for pure IP networks and thus they do not provide support
for overlay networks nor for IoT network protection.

• They are usually installed in a component, which is deployed in the middle of the data
path, and this is the only security control point available in the infrastructure and thus they
do not provide support for dynamic distributed enforcing of protection/healing policies.

• They do not understand the network topology and thus are not able to take plans based
on such topologies, especially the topology of IoT networks.

At this step we have designed the architecture of the Network Self-healing component based on
the previously identified problems. The Network Self-healing component will provide Prescriptive
Analytics using the data received in real time to determine which actions should be enforced in
order to mitigate an alert. Thus, when an attack has been detected we need to know:

D3.1: Horizontal Planes - first version

© ARCADIAN-IoT Consortium 2021-2024 Page 54 of 74

• WHAT action should be taken

• WHERE this action should be enforced

• WHEN it must be enforced

• For HOW LONG it must be active.

The designed architecture allows the Network Self-healing component (cf. Figure 17) to be
integrated within a loop together with Network Flow Monitoring and Network Self-protection
components. This loop provides the detection of alerts in overlay and IoT networks. These alerts
will be detected in distributed instances of Network Flow Monitoring deployed along the IoT multi-
tenant infrastructure. Thus, the Network Self-healing component will be in charge of receiving this
information in a centralized instance. The information shared from the Network Flow Monitoring
instances will include (i) information about the malicious flow, (ii) information about the rule that
has raised the alert, and (iii) the point where it has been detected.

The Network Self-healing component is composed of two subcomponents: the UWS SHDM and
the UWS RIA. RIA has been designed and a first prototype is being implemented. It is a distributed
component that must be deployed at least in the same machines of the data plane where the
Network Flow Monitoring and the Network Self-protection components instances are deployed.
RIA is in charge of the discovery of the network topology, so that SHDM can identify the point
where the alert has been raised and where it has to mitigate the attack. RIA uses the Linux
Inventory Tools (cf. Figure 18) such as lldpcli, ispci, iproute2, lshw, brctl and ovs-vsctl to collect
the topological information in the machine where it is installed. This information is reported
periodically to an internal topology interface where SHDM is listening.

Figure 18. Architecture design of the UWS Resource Inventory Agent.

SHDM has been designed so that it will be a centralised component that implements the main
functions of the Network Self-healing component. It will receive the alerts from the Flow Monitoring
component and the topological information from RIA. SHDM will use a set of Healing Decision
Rules to provide Prescriptive Analytics and autonomously decide the WHAT, WHERE, WHEN
and HOW LONG parameters previously cited. This information will be sent as a Network Healing
Instruction to be collected from the exact instance of the Self-protection component determined
by the WHERE parameter.

3.6.2.2 Evaluation approach

Following the prototyping, the overall behaviour of the Network Self-healing component will be
empirically tested as a preliminary step towards the integration with the rest of the architectural
components composing the Horizontal Planes of the ARCADIAN-IoT framework. The tests will
be carried out in the cloud data centre at the UWS premises in Paisley Campus (Scotland) and
will be focused on two aspects: functional validation and overall performance.

Regarding functionality, it will be empirically verified that the Network Self-healing component is
able to effectively receive the alerts raised from the different Network Flow Monitoring component
instances, that the RIA subcomponent is able to discover the topology, that the SHDM
subcomponent is able to produce Prescriptive Analytics and that the Network Self-healing enforce

D3.1: Horizontal Planes - first version

© ARCADIAN-IoT Consortium 2021-2024 Page 55 of 74

in the data plane the set of healing actions sent by the Network Self-healing component able to
communicate the Network Healing Instructions correctly with the final objective of stop malicious
traffic coming from DDoS attacks previously detected by the Network Flow Monitoring component.

Regarding performance, the following features will be evaluated to demonstrate the suitability of
the component for its integration into a 5G IoT architecture such as the one defined in ARCADIAN-
IoT:

• Scalability: Maximum Number of devices in the network infrastructure to be discovered
by RIA.

• Delay: Average time to process each received alert and produce the network healing
instruction.

3.6.3 Future work

Currently the UWS team is engaged in the implementation of a functional prototype. A first version
of this prototype will be available during the second year of the project.

After prototyping and as a last step in the development of the component, the prototype will be
empirically validated and evaluated (as described in previous subsection). Hence, a last version
of the prototype will be released in deliverable D3.2 and an empirical validation and evaluation of
the overall performance of this component will be reported in deliverable D3.3. Finally, this
component will be integrated into the ARCADIAN-IoT architecture where it will interact with other
components to fulfil the project requirements. In this regard, it is particularly relevant the
integration with the Network Flow Monitoring and the Network Self-protection components in order
to achieve an autonomous cognitive self-healing loop in the network.

3.6.4 Current resources

Due to the application of IPR safeguarding measures, UWS has not the intention to make any
release of the source code for this component and thus it will not be made available in any public
or private repository or server outside of our premises. For integration purposes, a functional
prototype of the Network Self-healing component will be released for the ARCADIAN-IoT
consortium.

D3.1: Horizontal Planes - first version

© ARCADIAN-IoT Consortium 2021-2024 Page 56 of 74

4 COMMON PLANE

The Common Plane provides the functionalities that are common to all other horizontal and
Vertical Planes and includes the Hardened Encryption mechanisms aiming to provide a
complete and innovative protection for IoT devices, and the Permissioned Blockchain which
will provide immutable auditability and traceability properties to the data under management.

The research activity related to the components in the Common Plane is part of Task 3.1
(Permissioned Blockchain) and Task 3.2 (Hardened Encryption) in WP3.

4.1 Hardened Encryption

The design and development of the Hardened Encryption component is part of Task 3.2 in WP3.

4.1.1 Overview

4.1.1.1 Description

ARCADIAN-IoT aims at providing encryption mechanisms to secure private IoT data. A standard
approach is to employ symmetric cryptographic protocols allowing devices, servers, and users to
secure their data for transmission, storage, or other purposes. Unfortunately, this approach
implies that a big amount of cryptographic material, such as secure keys, needs to be managed.
On one hand, keys could be leaked or breached, especially if a single authority server has access
and stores all of them, while on the other hand, such a system does not offer much flexibility.
ARCADIAN-IoT's component Hardened Encryption (HE) aims to overcome these limitations by
providing a system that is more flexible, decentralized, and further hardened by one of the three
supported options (depending on the scenario): (i) the hardware-based Root of Trust (RoT)
provided by the eSIM component, (ii) the hardware-based RoT provided by an IoT device with an
embedded crypto chip, or (iii) the hardware-based RoT provided by an independent / external
crypto chip module integrated by vendor into its existing IoT device, as an add-on module.

XLAB is building the HE component consisting of three subcomponents. The first one is a
software library that devices, servers, and other entities can use to encrypt or decrypt/access the
data. The main paradigm we build on is so called Functional Encryption (FE), in particular a
subfield of Attribute Based Encryption (ABE). ABE allows participants to secure their data based
on policies that determine the right entity that can decrypt the data, on one hand; on the other
hand, keys based upon the attributes of entities can be distributed. This introduces a flexibility
into the system giving the choice on who can decrypt the data in the hands of the encryptors.
Moreover, this drastically reduces the number of keys needed in the system.

Secondly, HE will include a decentralized key management system for distributing the (ABE) keys
and access rights among the entities in the system. This will eliminate a single point of failure,
such as a single server having access to all the cryptographic material. The key management
system will be integrated with blockchain solution provided in ARCADIAN-IoT framework, and
also with the framework’s authentication based on Self-Sovereign Identity and hardware-based
RoT.

Finally, to increase the trust in the system and prevent impersonation attacks and similar
breaches, the signing of encrypted payloads will be enabled by eSIM hardware-based RoT. Such
signatures will guarantee the authenticity of data without the risk of cryptographic keys being
exposed, due to being generated and embedded into the hardware secure element itself.

In scenarios where a crypto chip (as add-on module or embedded into an IoT device) is the
adopted option, the IoT device’s firmware will be equipped with (i) an agent for handling the keys
and (ii) an agent for handling the decentralized authorization (as a second protection, on top of
hardware encryption); on the other side, the IoT middleware platform (specific for the selected
scenario) needs to include features for (i) key management, (ii) ARCADIAN-IoT services
management, and (iii) relaying on 3PP platforms and decentralised authorisation.

D3.1: Horizontal Planes - first version

© ARCADIAN-IoT Consortium 2021-2024 Page 57 of 74

4.1.1.2 Requirements

A recall of the high-level requirements that have been previously defined and provided in
deliverable D2.4 [2] is given below.

Requirement 4.1.1 – Encryption mechanism: Enable secure and lightweight encryption with
access policy and hardware-based RoT.

Requirement 4.1.2 – Secure key-generation: Provide secure and scalable key management and
delegation synchronized with the decentralized identity management.

4.1.1.3 Objectives and KPIs

With the aim of fulfilling the project’s objectives, the Hardened Encryption component will be
evaluated against the following KPIs:

• Provide at least three encryption mechanisms with low overhead.

• Enable efficient encryption with RoT information.

• Support selective recovery ability in encryption mechanisms: who and what can be
recovered.

All these KPIs are related to the main project objective “Provide a Hardened Encryption with
recovery ability” (as recalled in Introduction).

4.1.2 Technology research

4.1.2.1 Technical findings and achievements

The research work carried out within the scope of the Hardened Encryption (HE) component
focused on analysing the state of the art of the proposed technologies, researching the
possibilities of intertwining them, and developing an architecture plan for the component and its
interactions with other components.

4.1.2.1.1 Attribute-Based Encryption

Attribute-Based Encryption (ABE) represents a family of encryption schemes first introduced in
2005 by A. Sahai and B. Waters [22], that mathematically ingrains access control (specifically,
access policies) directly into the encryption process itself. The family is commonly divided into
two distinct subfamilies of schemes: Key-Policy ABE and Ciphertext-Policy ABE (CP-ABE) (see
[23]). As the former is less suitable for use in this project, we focus on the latter. The principal
idea of CP-ABE is that the ciphertext is encrypted with an access policy defining which attributes
an entity needs to possess in order to decrypt the ciphertext. The access policy is normally in the
form of a Boolean formula, i.e., the necessary attributes connected by the AND and OR logical
connectives. The exemption of the NOT logical connective makes it impossible to exclude entities
possessing more attributes than necessary, which is in line with the idea that entities may choose
to hide parts of their identity in the Self-Sovereign Identity model. Entities wishing to decrypt the
data encrypted with them in mind have to obtain the attribute/decryption keys (one per attribute)
from the Attribute Authority that checks the entities’ eligibility for attribute keys and delegates the
keys to the respective entities. The data is then decrypted if and only if the set of attribute keys
belonging to the entity satisfies the access policy. This procedure has the advantage that users
need to maintain only their set of attribute keys to be able to decrypt all the data encrypted with
them in mind, since data is always encrypted with the same public key (technically belonging to
the Attribute Authority), instead of managing a complicated web of symmetric and asymmetric
encryption keys.

A severe problem with ABE is the existence of a single Attribute Authority. The Attribute Authority
needs to be a trusted entity, since it possesses the master decryption key (corresponding to the
public key used for encryption) that can be used to decrypt all data encrypted with its public key,

D3.1: Horizontal Planes - first version

© ARCADIAN-IoT Consortium 2021-2024 Page 58 of 74

and delegates decryption keys to all other entities in the network. It represents a single point of
failure and is an obvious attack target for adversaries and malicious actors who wish to decrypt
sensitive data, enrol their own devices into the network, or disturb the network by preventing the
distribution of new decryption keys.

To decentralize the cryptosystem in ARCADIAN-IoT, we have developed an architecture plan to
use CP-ABE encryption scheme that uses a multiple key authority setup (due to A. Lewko and B.
Waters [23]) in order to mitigate a single point-of-failure weakness present in traditional ABE
schemes. The scheme uses multiple Attribute Authorities that check the user’s eligibility for
decryption keys pertaining to presented attributes and then delegates the decryption keys to the
user, as illustrated in Figure 19 below. The Attribute Authorities can serve decryption keys for a
unique set of attributes, they can serve the decryption keys for the same set of attributes as other
Attribute Authorities, or any combination of the two. The decryption policy can then be adjusted
to require an almost arbitrary set of attributes from various Attribute Authorities for the user to
possess in order to decrypt the data. The decryption policies can therefore be constructed in a
way that it forces potential malicious actors to compromise many (or all) Attribute Authorities, not
just a single one, in order to obtain a usable set of decryption keys, or in a way that maximizes
redundancy to make the network resilient to DoS attacks. To the best of our knowledge, this is
the first approach to use decentralized ABE schemes in the context of IoT devices.

Figure 19. Attribute-Based Encryption with multiple authorities.

4.1.2.1.2 eSIM as hardware-based RoT for Hardened Encryption

Regarding the use of eSIM as a hardware-based RoT for the HE component, in the joint studies
made by TRU and XLAB, several hypotheses were raised. Examples are: (i) having the encryption
mechanisms within the secure element itself; or (ii) having it establishing a secure communication
channel for IoT devices. Not considering ARCADIAN-IoT context, both hypotheses were feasible:
the eSIM has cryptographic capabilities and allows the establishment of secure channels (e.g.,
(D)TLS) – see Figure 20 for details. However, considering the envisioned IoT solutions of the
targeted domains, the first hypothesis was excluded due to the amount of data to encrypt (e.g.,
sets of photos from drones), which is unfeasible to be processed at the secure element. The
establishment of a secure communication channel is a feasible approach but does not relate
completely with the intended HE process that is described as an encryption process with RoT
information (grant agreement). Considering the context and the objectives, the hypothesis
selected for being prototyped for assessment and further research, is a novel combination of the
eSIM abilities with the ABE previously described. It consists of using eSIM RoT for signing data
encrypted at the device with the ABE (or the hash of that data). In this scenario, the ABE
encryption in strengthened with the RoT signature, avoiding thus, e.g., impersonation attacks
(malicious agents sending data – fake, corrupted or with other intention – in the name of other
devices).

D3.1: Horizontal Planes - first version

© ARCADIAN-IoT Consortium 2021-2024 Page 59 of 74

Figure 20. eSIM security abilities - GSMA IoT SAFE specifications.16

To this end, a novel eSIM applet, ARCADIAN-IoT eSIM applet, has been designed and is being
prototyped. This artifact, whose general architecture can be seen Figure 21 (including a IoT SAFE
applet, explained after) starts by being a regular eSIM profile for connectivity enablement,
including the regular TRU’s MVNO (Mobile Virtual Network Operator) connectivity features for
such, like the eUICC OS or SIM OS, the NAA (Network Access Applications), and a set of applets
that are able to run specific processes in the secure element, some of which specific from TRU
(e.g. its multi-IMSI patented technology for programmatic management of worldwide connectivity
attachment).

Figure 21. eUICC structure comprising the IoT SAFE applet.16

The novelty of ARCADIAN-IoT eSIM applet starts by its compliance with GSMA IoT SAFE16 (SIM
Applet For Secure End-to-End Communication) specifications integrated in a HE process, but it
will be extended to novel attestation, device self-protection and device self-recovery processes,

16 https://www.gsma.com/iot/iot-safe/

https://www.gsma.com/iot/iot-safe/

D3.1: Horizontal Planes - first version

© ARCADIAN-IoT Consortium 2021-2024 Page 60 of 74

acting thus as RoT to ensure novel processes of device-to-cloud security and integrity. The
research team will look forward to contributing to the enhancement of the existent state of the art,
being already present in GSMA IoT SAFE working group to contribute with the outcomes of the
research. Within the HE component, its first ARCADIAN-IoT eSIM prototype will have means to
securely sign outgoing encrypted data with a secret generated and stored in the hardware secure
element itself.

The intended functionality and the related processes for the first prototype are the following:

• M2M bootstrap scenario: When a compliant IoT device is turned on for the first time it is
provisioned with an ARCADIAN-IoT eSIM profile (that includes the connectivity features
and the security applet). Once the profile is activated in the device it connects to TRU
network, which, recognizing the device and the ARCADIAN-IoT eSIM, requests, securely
over the air, the security applet to generate a public/private key pair. The public key is
returned, the certification process proceeds, and the public key is provisioned to the
ARCADIAN-IoT components that will need to validate the signatures in the payloads.

• Personal device bootstrap scenario: When a user registers in an ARCADIAN-IoT
compliant app it is provisioned with an ARCADIAN-IoT eSIM profile (that includes the
connectivity features and the security applet). Once the profile is activated in the device it
connects to TRU network, which, recognizing the device and the ARCADIAN-IoT eSIM,
requests, securely over the air, the security applet to generate a public/private key pair.
The public key is returned, the certification process proceeds, and the public key is
provisioned to the ARCADIAN-IoT components that will need to validate the signatures in
the payloads.

• Hardened Encryption process: To ensure data privacy and security, all the outgoing data
from a compliant IoT device, or compliant app in a personal device, needs to be encrypted.
The process consists of firstly encrypting the data (ABE), which then requests the RoT to
sign the encrypted payload (or its hash), and finally sends it to the intended service.

• Signature validation: ARCADIAN-IoT services that are intended to verify the data integrity
(e.g., attestation component, or the decryption component) should have the public key
that allows to verify the RoT signature of the packages, ensuring thus its integrity.

The description above is a first high-level approach, to be enhanced in the next reporting period.

As previously mentioned, the previous scenario describes processes that relate with GSMA’s IoT
SAFE. This state-of-the-art specification,17 which is still open for contributions, enables IoT device
manufacturers and IoT SPs to leverage the SIM as a robust, scalable, and standardized hardware
RoT to protect IoT data communications. Figure 22 depicts its components in the device side and
in the server side.

17 https://www.gsma.com/iot/iot-safe/

https://www.gsma.com/iot/iot-safe/

D3.1: Horizontal Planes - first version

© ARCADIAN-IoT Consortium 2021-2024 Page 61 of 74

Figure 22. GSMA IoT SAFE components and their relation.17

In the first prototype of ARCADIAN-IoT eSIM profile, we are focusing on the security applet (the
SIM with IoT Security Applet in the figure above). In the next reporting period, the IoT Device
Middleware will be developed as well as the security services from the IoT Backend. The IoT
Client Application is understood as being the HE process, and the IoT Server Middleware is the
service that allows to securely communicate with the applet, interfacing with ARCADIAN-IoT
framework.

Specifically, for the HE component, the first prototype of the RoT comprises the following
methods, following GSMA IoT SAFE specifications.

Table 5. Selected methods for the first prototype of ARCADIAN-IoT security eSIM applet.

Method Brief description [24] Prototyping status

1 Generate
Key Pair

The Generate Key Pair method is used to generate
an asymmetric key pair. Upon successful execution
both public and private keys are updated in the key
store with their respective value and the public key
is returned to the caller.

First prototype done in March-22.
Potential current limitation: just
allows one key pair per device (no
key store implemented yet)

Unit tests ongoing integrated with
the compute signature – update
method.

2 Compute
Signature -
Init

The Compute Signature – Init command opens a
session to compute a signature. The command can
also be used to cancel a signature computation
session.

First prototype expected by April-22.

3 Compute
Signature -
Update

The Compute Signature – Update command is
used to provide the applet with reference data to
compute and return a signature to the caller

First prototype done in March-22.

Unit tests ongoing integrated with
the generate key pair method.

The methods in Table 5 are the key ones for fulfilling the intended functionality of the RoT in the

D3.1: Horizontal Planes - first version

© ARCADIAN-IoT Consortium 2021-2024 Page 62 of 74

HE process. These will be target of unit testing and integration testing in the next reporting period,
and the results will feed the research on the use of the RoT in the HE.

4.1.2.1.3 Crypto chip as hardware-based RoT for Hardened Encryption

When we aim to secure end-to-end grid sensors data traffic to/from a management IoT platform,
the HE system consists of two parts: IoT device and middleware application. They are intended
to provide protection to several types of industrial telemetry data in ARCADIAN-IoT, by employing
modern and disruptive encryption mechanisms further hardened by a hardware-based RoT, the
crypto chip in this case. The crypto chip has been designed in two different configurations, i.e.,
as add-on module or directly embedded into an IoT device. Also, the system will include a
hardware encryption and decryption service for both authorisation, traffic, and recovery stages of
IoT device lifecycle, with predefined configurable policies for interfacing with other related
ARCADIAN-IoT services (as reputation, recovery, cyber security, flow monitoring, etc.).

The IoT device (containing the crypto chip) firmware provides (i) an agent for handling the keys
and (ii) an agent for handling the decentralized authorization. The agent handling crypto keys is
being developed from scratch, and embedded into IoT device firmware, following the data formats
and specifications required by crypto chip supplying vendor. It will extract and validate the
necessary keys for the appropriate steps in the authorization process and/or in telemetry (grid
sensors) traffic management, and provide the primitives for running the encryption and decryption
functions in the main firmware core system. The agent handling decentralized authorization will
integrate an open-source protocol that will be chosen for this purpose, and will be embedded into
the IoT device’s firmware, respecting protocol specifications.

To work properly, the ARCADIAN-IoT HE component adopted to secure end-to-end
communication in grid sensors infrastructures, requires the adoption of a specific middleware
application running the following services: (i) a key management system (described in Section
4.1.2.1.4), (ii) an agent for managing the cooperation with other services provided by the
ARCADIAN-IoT framework, and (iii) a set of interfaces to manage the interaction with 3PP
systems and decentralized authorisation mechanisms (if this decentralised authorisation
mechanism is not an Arcadian service, optionally could be a 3PP providing such).

4.1.2.1.4 ABE Key Management System

As explained in Section 4.1.2.1.1, the ABE keys in the selected protocol are manged with
decentralized authorities. The developed architecture plan predicts deploying multiple servers in
charge of distributing secret ABE key to authorized devices and users, such that they are able to
decrypt appropriate information with respect to their attributes. The key management system
architecture includes integration with other ARCADIAN-IoT components:

• The ARCADIAN-IoT blockchain ledger will provide a decentralized anchor of trust for
public ABE keys (see Figure 23), as well as trusted decentralized hosting of the said public
ABE keys directly.

• The authentication (possibly multi-level) system developed in ARCADIAN-IoT is used to
access the key management system and request the needed keys.

• The system will enable attestation component by providing appropriate keys for the
attestation process.

D3.1: Horizontal Planes - first version

© ARCADIAN-IoT Consortium 2021-2024 Page 63 of 74

Figure 23. Attribute-Based Encryption architecture with integrated hardware RoT and blockchain support.

Furthermore, we will address other technical issues, such as techniques on transferring
decryption keys over the network or over out-of-bound channels to entities other than the Attribute
Authority that generates them (since decryption keys are mathematically points on predetermined
elliptic curves and they need to be properly formatted and wrapped before transmission), and
modelling the infrastructure needed to maintain a decentralized key management system
composed of many Attribute Authorities using virtualization technology, including the Attribute
Authorities themselves along with some peripheral and intermediate services, such as (TLS)
certificate authorities and encryption proxies, respectively.

4.1.2.2 Evaluation approach

All the code associated with the HE component will be extensively tested with both unit and
integration tests provided by the ecosystem of the programming language we are currently using
(Go).

It is yet to be determined precisely how integration tests will be done with respect to integration
with the other components of ARCADIAN-IoT, however high-level components such as
blockchain network nodes and larger servers are likely to be simulated using virtualization
technology. Test files and testing instructions will be provided together with the component and
will be automated as much as possible using available testing frameworks and shell scripts.

In any case, the two parts of the HE component should be evaluated separately. The software
library should be evaluated by running all the included tests and making sure the test coverage is
as high as possible. The decentralized key management system should also be evaluated by
checking its conformance to the relevant academic literature (which will be referred to in the
component), and by observing its performance and security under heavy loads.

4.1.3 Future work

The scheme we are developing needs to be tailored to be deployed within the ARCADIAN-IoT
framework, as its current state is generic and context-agnostic. IoT devices vary in computational
power and capability, and this is reflected into the differences between devices in the Domains.
The HE component will therefore have to be adjusted on a per-Domain basis as needed. For
example, in Domain C devices will not perform their own encryption, but rather the data will be
encrypted in users’ phones, so the software library part of the component will need to be tailored
accordingly. Other Domains use different cryptographic chips which will have to be taken into
account.

In addition to an ABE scheme, a key-revocation scheme has to be implemented on top of ABE,
since ABE schemes do not support revoking decryption keys natively. This is currently an active

D3.1: Horizontal Planes - first version

© ARCADIAN-IoT Consortium 2021-2024 Page 64 of 74

area of study in the academic cryptographic community, since not allowing key revocation in
public key cryptosystems with multiple entities poses a major security risk in case a malicious
actor obtains valid decryption keys, or in case a legitimate entity turns malicious.

Working with other components, ABE keys must be integrated with the hardware RoT on the one
hand and a blockchain ledger on the other (see Figure 23), taking into account the recovery
components as well. ABE public keys especially should be included in the public identity of all
Attribute Authorities on the blockchain so they can be retrieved in a decentralized manner. This
will most likely be achieved by appending ABE public keys to the Attribute Authorities DID
(Decentralized Identifier) documents, but depends on the Permissioned Blockchain component.
The way the hardware RoT is achieved in a particular Domain will also influence how exactly ABE
decryption keys will be handled.

The cryptographic infrastructure of Attribute Authorities has to be erected and integrated with
other components. The ABE cryptographic infrastructure will most likely not be stand-alone but
completely integrated into the blockchain network. The details are yet to be determined, as this
will be a joint effort with other components.

A better system of writing ciphertext access policies for ABE should be implemented, since
passing Boolean formulas is not suitable for use in a multiple authority setup, as it is
unmaintainable and does not scale, in addition to being incomprehensible to the end user.

An additional avenue of interest to the HE component is the so-called Functional Encryption (FE),
a generalization of ABE and several related cryptographic families. Instead of providing a mere
access structure describing who can decrypt the data, but still decrypting it to its original form, FE
allows the authority generating the decryption keys to generate specific function decryption keys
that do not decrypt the data itself but rather compute the value of the specified function on the
encrypted data and return the result in its decrypted form. The functions that can be chosen are
limited to certain classes of functions, we namely have inner product schemes and quadratic
polynomial schemes, which roughly correspond to computing a weighted mean of some data list
and computing matrix multiplication, respectively. Furthermore, the data does not have to be
encrypted by a single party but can be encrypted by multiple parties and then combined into a list
before decryption. A particular use case that comes to mind is securing individual data-points of
sensor data and only allowing the result of some statistical function to be decrypted by authorized
entities. A significant difference between ABE and FE is that while the decryption access policy
has to be known at the time of encryption of any piece of data (and cannot be changed after the
ciphertext has been sent/published), the functions we would like to compute on the FE encrypted
data do not need to be known beforehand. Any entity wishing to compute a different function on
the FE encrypted data can simply ask the authority generating keys to generate them a new key
for the desired function. In this way FE is much more flexible than ABE, but the authority has to
be more careful when delegating keys not to give out sets of function keys that would allow one
to compute the original plaintext data from function results.

4.1.4 Current resources

The GoFE functional encryption library written in Go, available publicly on GitHub,18 will most
likely act as a basis for the cryptographic components and the scheme we are developing. It
contains implementations of many ABE and FE schemes. We have already extended the library
with a basic implementation of the multiple authority ABE scheme mentioned above, which is
planned to be used in the project. The GoFE library will be further expanded as needed and then
either directly used or forked and modified to meet the needs of the HE component in particular
Domains, in the development of the HE component’s software library. In addition to containing
the code, the GoFE library also refers to example uses of ABE and FE, which might come useful

18 https://github.com/fentec-project/gofe

https://github.com/fentec-project/gofe

D3.1: Horizontal Planes - first version

© ARCADIAN-IoT Consortium 2021-2024 Page 65 of 74

when developing the HE component’s software library, and to a related C library which has similar
functionality.

Multiple different projects that aim to introduce ABE to the world of IoT-devices offer a similar
inspiration, e.g. [25]. A notable example of such a project is the solution brief on decentralized ID
and access management for IoT networks published by the Hyperledger Telecom Special Interest
Group and the LF Edge initiative at [26], and then successfully implemented by IBM and its
partners. While most, if not all, of these projects use some form of blockchain technology, they
often lack in providing a strong hardware-based RoT and in using novel cryptographic techniques
such as ABE or FE to secure and verify data at rest and in transit. We aim to improve upon such
solutions by bringing strong hardware security, modern blockchain technology, and safe
implementations of new state-of-the-art algorithms together into a well-integrated component.

Most of the prototypes mentioned above are in publishing condition, but we are working on them
with other components. As they mature, they will be released under an open-source license. The
current prototype essentially consists of small pieces that each test one specific functionality of
the envisioned component.

We already have a prototype of the ABE decryption key exchange over the network, it consists
of two distinct programs, representing an Authority and a User (decryptor). The included test case
involves setting up three instances of the Authority program and a single instance of the User
program. The User program mutually authenticates with the Authority programs using PKI, then
negotiates to obtain attribute decryption keys tied to their identity over the internet and stores
them locally. The ABE parts of the exchange use the GoFE library. The described prototype will
be made available on GitLab.

D3.1: Horizontal Planes - first version

© ARCADIAN-IoT Consortium 2021-2024 Page 66 of 74

4.2 Permissioned Blockchain

The design and development of the Permissioned Blockchain component is part of Task 3.1 in
WP3.

4.2.1 Overview

4.2.1.1 Description

The Permissioned Blockchain is a common horizontal component in the ARCADIAN-IoT
framework serving both Horizontal and Vertical Plane components such as Identity Management
and Hardened Encryption, which make use of its immutable auditability and traceability properties.

Given the sensitive nature of data that will be shared in the network, ARCADIAN-IoT the project
initially requested to use a private Permissioned Blockchain approach for all use cases, but this
will again be re-evaluated upon deeper analysis of each use case. Permissioned Blockchains
place restrictions on who is allowed to participate in the network and in what read or write
transactions. It can have several conditional access features for users to obtain permission to
operate at given levels.

In order to interact with the blockchain, software clients typically run their own node, automatically
updating the common state internally and then notifying the rest of nodes. Importantly the
Permissioned Blockchain has much higher throughput and aimed more at enterprise solutions
whereas the public permissionless blockchains are much slower due to their global participation
and complex consensus proofs.

4.2.1.2 Requirements

The high-level requirement that has been previously defined and provided in deliverable D2.4 [2]
has been updated as shown below.

Requirement 4.2.1 – Provide a Permissioned Blockchain:

• To provide a Permissioned Blockchain to anchor the trust for Decentralized identifiers.

• To provide a Permissioned Blockchain to publish information to be shared in a trusted and
immutable fashion with different actors in the ecosystem, e.g., reputation scores for things
and persons.

• Users have the right to delete all personal information published on them stored on
ARCADIAN-IoT components.

• To be able to support the deletion of personal and device information it is needed to make
use of off-chain databases that have their trust anchored in the blockchain.

4.2.1.3 Objectives and KPIs

The primary objective is to deploy an open-source Permissioned Blockchain network to support
the other components in the ARCADIAN-IoT architecture that will benefit from its decentralized
immutable auditability and traceability properties. The blockchain component will be evaluated
against the following KPIs in all use case domains:

• Have at least three components using the blockchain in the ARCADIAN-IoT framework.

• Facilitate deployment of blockchain technologies by non-cyber security experts in cyber
security training sessions with, at least 20 participants.

• Deploy a blockchain network on at least 3 peer nodes.

All these KPIs are related to the main project objective “Enable distributed security and trust in
management of persons’ identification” (as recalled in Introduction).

D3.1: Horizontal Planes - first version

© ARCADIAN-IoT Consortium 2021-2024 Page 67 of 74

4.2.2 Technology research

4.2.2.1 Technical findings and achievements

The primary characteristics that blockchain technology facilitates to components of the ACADIAN-
IoT framework are as follows:

• Decentralized: Blockchain provides a decentralised peer-to-peer network of nodes that
maintain an immutable record on a fault-tolerant ledger through consensus mechanisms.
The decentralization means that all peer nodes have a copy of the ledger and access the
same information so the greater number of nodes in the network the greater the fault
tolerance. The consensus mechanisms facilitate that there is no central authority providing
a trust anchor which facilitates the trust in the integrity of the data stored in the distributed
ledger.

• Transparent: The decentralized network also means that any participant in the blockchain
network can perform transactions with any other participant in a transparent manner. The
transparency is achieved by the fact that all data on the ledger (on-chain) is available to
all participants who have access to the ledger.

• Private: Privacy can be maintained by different means for example by providing a
Permissioned Blockchain and also creating private blockchain subnetworks or channels
where only those participants have access or by only storing hashes of private data on
the ledger to be used to later check the integrity of private data stored (off-chain).

• Immutable: The intrinsic design of the recording blocks of data on the ledger provides for
an incorruptible storage of data assuring its integrity from that point. This integrity of the
blockchain also means that all transactions that enter data into the ledger are recorded
and cannot be removed which has to be taken into consideration for storing of personal
data due to the GDPR article on the “right to be forgotten.”

The ARCADIAN-IoT framework will be supported with a blockchain network of at least three peer
nodes, as per the non-normative example below, with its component elements also described.

Figure 24. Example of a blockchain network with three peer nodes.

D3.1: Horizontal Planes - first version

© ARCADIAN-IoT Consortium 2021-2024 Page 68 of 74

The blockchain network shown above is composed of three organisation deployments with the
different colours representing each deployment. The functions offered by each element are
described as follows:

• Smart Contract: This is essentially the backend business logic of a decentralized
blockchain application running on the peer nodes. A smart contract functions as a trusted
distributed application that gains its security and trust from the blockchain and the
underlying consensus among the peers.

• dApp: This is the decentralized client application that requests the Smart Contract on the
blockchain peers to carry out a transaction on a business object / asset and publish the
result to the ledger.

• Peer: This implements the consensus protocol between the peers in the network for
reaching consensus in publishing data to the ledger.

• On-chain Ledger: This is the immutable writing transaction on a ledger based on blocks
of data protected by crypto proofs on previous block written on the ledger. Data written on
the on-chain ledger cannot be deleted as deleting any block would violate the trust in the
ledger.

• Off-chain Ledger: This is a data store where the integrity of the entries is provided by
cryptographic hash stored on the blockchain. This is an important function for processing
personal data and also data that needs to be shared only between a few private actors.

Note that the peer nodes will be hosted by trusted project partners who participate in the
publishing of data on the blockchain.

The combination of blockchain characteristics, previously described, makes the blockchain useful
for applications that would benefit from a decentralized trust model. Within ARCADIAN-IoT the
primary use of the blockchain is to allow some trusted actors to write on the blockchain so as to
publish data that is made available to its participants and shared with third parties which can then
verify the integrity of the data against the blockchain. It is important to highlight that no personal
data shall be stored on-chain.

The blockchains will be deployed in three main components of the ARCADIAN-IoT framework: (i)
Decentralized Identifiers, (ii) Reputation System, and (iii) Hardened Encryption.

Since the data published on a blockchain is intrinsically dynamic and may also include personal
information, it is normal practice that business objects/assets that need to be published should
be stored off-chain while a crypto hash of the asset is instead stored on-chain.

Although a private Permissioned Blockchain might be preferred in some use cases, Decentralised
Identifier methods for public entities (e.g., public persons, services, and things) are commonly
deployed in publicly available blockchains. For this reason, ARCADIAN-IoT will deploy a
Permissioned Blockchain network where only some participants will be able to write on it, but all
members can read it; that is, both private and public Permissioned Blockchain networks with
mechanisms of access control (stating which entities have restricted access) will be supported.

A high-level analysis of the state of the art of leading private Permissioned Blockchain
technologies is carried out below.

Hyperledger Fabric19

Fabric is an open-source enterprise-grade permissioned Distributed Ledger Technology (DLT)
platform established under the Linux Foundation and currently has reached a development
community of over 35 organizations and nearly 200 developers. It is designed for the use in
enterprise contexts, which delivers some key differentiating capabilities over other popular

19 https://hyperledger-fabric.readthedocs.io/en/release-2.4/whatis.html

https://hyperledger-fabric.readthedocs.io/en/release-2.4/whatis.html

D3.1: Horizontal Planes - first version

© ARCADIAN-IoT Consortium 2021-2024 Page 69 of 74

distributed ledger or blockchain platforms, and has a highly modular and configurable
architecture, enabling innovation, versatility, and optimization for a broad range of industry use
cases (including banking, finance, insurance, healthcare, human resources, supply chain and
even digital music delivery).

It is the first distributed ledger platform to support smart contracts authored in general-purpose
programming languages such as Java, Go and Node.js, rather than constrained domain-specific
languages, so organisations benefit from existing competence.

The platform is also permissioned, meaning that, unlike with a public permissionless network, the
participants are known to each other, rather than anonymous and therefore fully untrusted. This
means that while the participants may not fully trust one another (they may, for example, be
competitors in the same industry), a network can be operated under a governance model that is
built off of what trust does exist between participants.

Key features of Hyperledger fabric are described in [27] and listed as follows:

• Rich queries over an immutable distributed ledger

• Support permissioned access to on-chain data on a need-to-know basis

• Support private data collections to protect personal and sensitive data off-chain

• Modular architecture supporting plug-in components

• Permissioned Membership Service

• Performance, scalability, and levels of trust

• Protection of digital keys and sensitive data.

Hyperledger Besu20

Besu is an open-source Ethereum client developed under the Apache 2.0 license and written in
Java. It is designed to run on the Ethereum public network, but can also run on private
permissioned networks, as well as test networks such as Rinkeby, Ropsten, and Görli.
Hyperledger Besu supports several proof-of-authority algorithms (including QBFT, IBFT 2.0, and
Clique) and proof-of-work (Ethash) consensus mechanisms.

Besu blockchain supports development of enterprise applications in Solidity to deliver secure,
high-performance transaction processing in a private permissioned network.

Besu includes a command line interface and JSON-RPC API for running, maintaining, debugging,
and monitoring nodes in an Ethereum network. You can use the API via RPC over HTTP or via
WebSockets. The API supports typical Ethereum functionalities such as (i) Ether mining, (ii) Smart
contract development, and (iii) Decentralized application (dApp) development.

Quorum21

Quorum provides a private permissioned network based on Ethereum for running smart contracts
aimed at the banking and finance sector. Quorum strengths are high speed, scalability, and fast
processing of private transactions. Its high speed is due to its simple consensus mechanisms
(RAFT, IBFT Clique PoA, QBFT), and because of being an extension of the Ethereum platform;
thus, most of the updates on Ethereum can be easily integrated in Quorum.

Quorum uses Solidity for smart contract developments; according to the DLT platforms
comparison provided by Alastria,22 Quorum is apparently less community active in recent years
while there is heavy competition in the Enterprise Ethereum area and platforms such as

20 https://besu.hyperledger.org/
21 https://github.com/ConsenSys/quorum
22 https://alastria-es.medium.com/comparison-of-dlt-platforms-be84950d339d

https://besu.hyperledger.org/
https://github.com/ConsenSys/quorum
https://alastria-es.medium.com/comparison-of-dlt-platforms-be84950d339d

D3.1: Horizontal Planes - first version

© ARCADIAN-IoT Consortium 2021-2024 Page 70 of 74

BlockApps and Hyperledger Besu.

Quorum networks can be used for a wide variety of use cases. In general, it seems to be the norm
for banking and exchange-based applications, due to the benefits provided in terms of privacy
brought to running processes, such as payments or post trade settlements.

IOTA Tangle23

IOTA Tangle is a DLT platform focused on IoT and provides a public permissionless network as
well as, more recently, a private permissioned capability. IOTA nodes are thin, making possible
to have an IOTA node running directly on a sensor. IOTA uses a persistence layer called IOTA
Tangle which is a type of Directed Acyclic Graph with certain minor changes and a rival technology
to blockchain. Whereas public blockchains rely on miners to select and aggregate the transactions
with the highest fees into a sequential chain of blocks, the Tangle can process transactions in
parallel, scaling with growing activity in the network. Consensus is also handled in small groups
of nodes (and then rolled up to the rest of the network) which means that transaction times per
second are extremely low.

Smart Contracts are supported in the ABRA language (supported by extensions like TOQN) and
run on QBriq. The implementation of tokenisation smart contract complexity is relatively limited
when compared to Smart contracts languages (e.g., Solidity and DAML). The network is
effectively centralized as a central coordinator is used to manage the network; however, IOTA 2.0
(Coordicide) with its fully decentralized approach, will substitute its previous version soon.

4.2.2.2 Evaluation approach

The evaluation approach in deciding which DLT to employ in the ARCADIAN-IoT framework
considered the following aspects:

• The support to different use cases (specifically ARCADIAN-IoT use cases and
requirements)

• The running efficiency and optimal use of resources

• The ability to develop in commonly used development languages

• The open-source developer community

• The provided support documents and tutorials

• The off-the-shelf support of private data that needs to be kept off chain.

Upon analysis of the open source permissioned blockchains, and the identified use cases for its
application, we have decided in the first instance to support ARCADIAN-IoT with Hyperledger
Fabric. Hyperledger Fabric comes out very strong in all of the above mentioned aspects and in
particular an efficient use of resources is achieved as most of the data can be stored off-chain,
making use of its Private Data Collections while being notarized on-chain; also greater throughput
and scalability are general characteristics of Permissioned Blockchains aimed at enterprise
applications, due to only a few authorised organisations allowed to write to the blockchain, leading
to more efficient consensus algorithms.

The methodology that can be used to evaluate Hyperledger Fabric smart contract transactions
with benchmark figures is available on Hyperledger’s GitHub.24

Ultimately, the evaluation of the Permissioned Blockchain in ARCADIAN-IoT framework and the
smart contract(s) that are developed for its use will be obtained by the evaluation of the
components that use it.

23 https://www.iota.org/
24 https://hyperledger.github.io/caliper-benchmarks/fabric/performance/

https://www.iota.org/
https://hyperledger.github.io/caliper-benchmarks/fabric/performance/

D3.1: Horizontal Planes - first version

© ARCADIAN-IoT Consortium 2021-2024 Page 71 of 74

4.2.3 Future work

The next step will be to examine in more details the business objects (assets) that the ARCADIAN-
IoT components has identified (cf. Section 4.2.2.1) for being published on the blockchain, their
lifecycle, and who needs to publish and/or access them.

It will then be identified if there will be a general purpose, or application-specific, Smart Contract
development for ARCADIAN-IoT and how this will be deployed in a blockchain network.

The technical design detailing implementation, deployment, and full external API specification for
the integration in each of the domains (to be carried out in WP5) will be released in deliverable
D3.2. The final technical design and software code will be provided in deliverable D3.3.

4.2.4 Current resources

No resources are available at the time of publishing.

D3.1: Horizontal Planes - first version

© ARCADIAN-IoT Consortium 2021-2024 Page 72 of 74

5 CONCLUSIONS

The main objective of this deliverable is to introduce the set of ten components that belong to the
Horizontal Planes of the ARCADIAN-IoT framework. In particular, it reports the preliminary
findings from the research activities carried out during the first seven months of the project,
including, but not limited to, the definition of the internal architecture in each component.

Each of the technical partners involved in WP3 (IPN, ATOS, MAR, RISE, BOX2M, UWS, XLAB,
and TRU) has contributed with the preliminary stage of definition, design, and implementation of
one or more components.

Each subsection is dedicated to a specific component which describes the component itself and
the current status of the research related to it. As part of this work, partners have identified the
methodology approach for evaluating the component, when considered as stand-alone.

Finally, we list the next steps in the development of the component together with the expected
outcomes, at the end of every subsection.

The resulting technologies developed within WP3 will be integrated together with the components
developed in WP4 for deployment and use cases demonstration in WP5.

D3.1: Horizontal Planes - first version

© ARCADIAN-IoT Consortium 2021-2024 Page 73 of 74

REFERENCES

[1] D4.1: ARCADIAN-IoT Vertical Planes. ARCADIAN-IoT project (2022). Available from:
https://www.arcadian-iot.eu/deliverables/
[2] D2.4: ARCADIAN-IoT framework requirements. ARCADIAN-IoT project (2021). Available
from: https://www.arcadian-iot.eu/deliverables/
[3] De La Calleja, Jorge, and Olac Fuentes. "A Distance-Based Over-Sampling Method for
Learning from Imbalanced Data Sets." In FLAIRS Conference, pp. 634-635. 2007.
[4] Mani, Inderjeet, and I. Zhang. "kNN approach to unbalanced data distributions: a case
study involving information extraction." In Proceedings of workshop on learning from imbalanced
datasets, vol. 126, pp. 1-7. ICML, 2003.
[5] Chawla, Nitesh V., Kevin W. Bowyer, Lawrence O. Hall, and W. Philip Kegelmeyer.
"SMOTE: synthetic minority over-sampling technique." Journal of artificial intelligence research
16 (2002): 321-357.
[6] Fernández, Alberto, Salvador Garcia, Francisco Herrera, and Nitesh V. Chawla. "SMOTE
for learning from imbalanced data: progress and challenges, marking the 15-year anniversary."
Journal of artificial intelligence research 61 (2018): 863-905.
[7] Wang, Han, Luis Muñoz-González, David Eklund, and Shahid Raza. "Non-IID data re-
balancing at IoT edge with peer-to-peer federated learning for anomaly detection." In Proceedings
of the 14th ACM Conference on Security and Privacy in Wireless and Mobile Networks, pp. 153-
163. 2021.
[8] Redana, Simone, Ömer Bulakci, Anastasios Zafeiropoulos, Anastasius Gavras, Anna
Tzanakaki, Antonino Albanese, Apostolos Kousaridas et al. "5G PPP architecture working group:
View on 5G architecture." (2019).
[9] Forrest, Stephanie, Steven A. Hofmeyr, Anil Somayaji, and Thomas A. Longstaff. "A sense
of self for unix processes." In Proceedings 1996 IEEE Symposium on Security and Privacy, pp.
120-128. IEEE, 1996.
[10] Haider, Waqas, Jiankun Hu, and Miao Xie. "Towards reliable data feature retrieval and
decision engine in host-based anomaly detection systems." In 2015 IEEE 10th Conference on
Industrial Electronics and Applications (ICIEA), pp. 513-517. IEEE, 2015.
[11] McMahan, Brendan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y
Arcas. "Communication-efficient learning of deep networks from decentralized data." In Artificial
intelligence and statistics, pp. 1273-1282. PMLR, 2017.
[12] Li, Tian, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia
Smith. "Federated optimization in heterogeneous networks." Proceedings of Machine Learning
and Systems 2 (2020): 429-450.
[13] Karimireddy, Sai Praneeth, Satyen Kale, Mehryar Mohri, Sashank Reddi, Sebastian Stich,
and Ananda Theertha Suresh. "Scaffold: Stochastic controlled averaging for federated learning."
In International Conference on Machine Learning, pp. 5132-5143. PMLR, 2020.
[14] Zhang, Tuo, Chaoyang He, Tianhao Ma, Lei Gao, Mark Ma, and Salman Avestimehr.
"Federated learning for internet of things: a federated learning framework for On-device anomaly
data detection." arXiv preprint arXiv:2106.07976 (2021).
[15] Creech, Gideon, and Jiankun Hu. "Generation of a new IDS test dataset: Time to retire
the KDD collection." In 2013 IEEE Wireless Communications and Networking Conference
(WCNC), pp. 4487-4492. IEEE, 2013.
[16] Danyliw, Roman, Jan Meijer, and Yuri Demchenko. "The incident object description
exchange format." IETF Request For Comments 5070 (2007).
[17] Specification, OpenFlow Switch. "Version 1.5.1." Open Networking Foundation (2015).
Available from: https://opennetworking.org/wp-content/uploads/2014/10/openflow-switch-
v1.5.1.pdf
[18] D2.5: ARCADIAN-IoT architecture. ARCADIAN-IoT project (2022). Available from:
https://www.arcadian-iot.eu/deliverables/
[19] de AC Mello, Ruan, Admilson de RL Ribeiro, Fernando M. de Almeida, and Edward D.

https://www.arcadian-iot.eu/deliverables/
https://www.arcadian-iot.eu/deliverables/
https://opennetworking.org/wp-content/uploads/2014/10/openflow-switch-v1.5.1.pdf
https://opennetworking.org/wp-content/uploads/2014/10/openflow-switch-v1.5.1.pdf
https://www.arcadian-iot.eu/deliverables/

D3.1: Horizontal Planes - first version

© ARCADIAN-IoT Consortium 2021-2024 Page 74 of 74

Moreno. "An architecture for self-protection in internet of things." ICWMC 2016 (2016): 51.
[20] Glette, Kyrre, Peter R. Lewis, and Arjun Chandra. "Relationships to other concepts." In
Self-aware Computing Systems, pp. 23-35. Springer, Cham, 2016.
[21] Raibulet, Claudia, Alberto Leporati, and Andrea Metelli. "Self-Protection Mechanisms for
Web Applications." In Proceedings of the 11th International Conference on Evaluation of Novel
Software Approaches to Software Engineering, pp. 181-188. 2016.
[22] Sahai, Amit, and Brent Waters. "Fuzzy identity-based encryption." In Annual international
conference on the theory and applications of cryptographic techniques, pp. 457-473. Springer,
Berlin, Heidelberg, 2005.
[23] Lewko, Allison, and Brent Waters. "Decentralizing attribute-based encryption." In Annual
international conference on the theory and applications of cryptographic techniques, pp. 568-588.
Springer, Berlin, Heidelberg, 2011.
[24] IoT Security Applet Interface Description. "Version 1.0." GSM Association (2019).
Available from: https://www.gsma.com/iot/wp-content/uploads/2019/12/IoT.05-v1-IoT-Security-
Applet-Interface-Description.pdf
[25] Pérez, Salvador, José L. Hernández-Ramos, Sara N. Matheu-García, Domenico Rotondi,
Antonio F. Skarmeta, Leonardo Straniero, and Diego Pedone. "A lightweight and flexible
encryption scheme to protect sensitive data in smart building scenarios." IEEE Access 6 (2018):
11738-11750.
[26] Solution Brief: Decentralized ID and Access Management (DIAM) for IoT Networks.
Available from https://www.hyperledger.org/blog/2021/02/25/solution-brief-decentralized-id-and-
access-management-diam-for-iot-networks
[27] Cocco, Sharon, and Gari Singh. “Top 6 technical advantages of Hyperledger Fabric for
blockchain networks” (2018). Available from https://developer.ibm.com/articles/top-technical-
advantages-of-hyperledger-fabric-for-blockchain-networks/

https://www.gsma.com/iot/wp-content/uploads/2019/12/IoT.05-v1-IoT-Security-Applet-Interface-Description.pdf
https://www.gsma.com/iot/wp-content/uploads/2019/12/IoT.05-v1-IoT-Security-Applet-Interface-Description.pdf
https://www.hyperledger.org/blog/2021/02/25/solution-brief-decentralized-id-and-access-management-diam-for-iot-networks
https://www.hyperledger.org/blog/2021/02/25/solution-brief-decentralized-id-and-access-management-diam-for-iot-networks
https://developer.ibm.com/articles/top-technical-advantages-of-hyperledger-fabric-for-blockchain-networks/
https://developer.ibm.com/articles/top-technical-advantages-of-hyperledger-fabric-for-blockchain-networks/

